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Abstract Saccades are rapid ballistic eye movements that humans make to direct the fovea

to an object of interest. Their kinematics is well defined, showing regular relationships be-

tween amplitude, duration and velocity: the saccadic ’main sequence’. Deviations of eye

movements from the main sequence can be used as markers of specific neurological disor-

ders. Despite its significance, there is no general methodological consensus for reliable and

repeatable measurements of the main sequence.

In this work, we propose a novel approach for standard indicators of oculomotor per-

formance. The obtained measurements are characterized by high repeatability, allowing for

fine assessments of inter- and intra-subject variability, and inter-ocular differences. The de-

signed experimental procedure is natural and non-fatiguing, thus it is well suited for fragile

or non-collaborative subjects like neurological patients and infants. The method is release

as a software toolbox for public use. This framework lays the foundation for a normative

dataset of healthy oculomotor performance for the assessment of oculomotor dysfunctions.

A. Gibaldi
School of Optometry and Vision Science, University of California at Berkeley, 380 Minor Lane, CA, USA
E-mail: agostino.gibaldi@berkeely.edu

S.P. Sabatini
Department of Informatics, Bioengineering, Robotics and System Engineering, University of Genoa, Via
All’Opera Pia, 13, Genoa 16145, Italy.



2 Agostino Gibaldi, Silvio P. Sabatini

1 Introduction

When scanning the surrounding environment, human eyes make two to three fixations per

second and move very quickly between each fixation with a saccadic eye movement. Since

the very beginning of eye movement research, the kinematics of eye movements has been in-

vestigated with a variety of measurement techniques: suction contact lenses (Yarbus, 1967),

scleral search coils (D. Robinson, 1964; A. Fuchs, 1967), electro-oculography (Becker &

Fuchs, 1969; Baloh, Sills, Kumley, & Honrubia, 1975), limbus tracking (Stark, Vossius, &

Young, 1962; A. T. Bahill, Clark, & Stark, 1975). All researchers agreed that eye move-

ment patterns are highly stereotyped: the duration and peak velocity of saccades increases

as the magnitude of the saccade increases (Yarbus, 1967; D. Robinson, 1964; A. Fuchs,

1967; A. T. Bahill et al., 1975). Particularly, the increase is linear for short saccades while

the speed asymptotically approaches a saturated value for large saccades. Borrowing a term

from astrology, Bahill and colleagues defined this relation as the main sequence for saccadic

eye movements (A. T. Bahill et al., 1975).

The main sequence has been proven a simple and powerful tool to investigate eye move-

ments (see (Leigh & Kennard, 2004; Ramat, Leigh, Zee, & Optican, 2006) as review). In ba-

sic research, it has been used to: 1) design and test neural models of saccadic eye movement

control (A. T. Bahill et al., 1975; Becker, 1989; F. R. Robinson, Straube, & Fuchs, 1993;

A. F. Fuchs, Robinson, & Straube, 1993; Quaia, Lefèvre, & Optican, 1999; Jagadisan &

Gandhi, 2017), 2) evaluate the effect of blinks (Khazali, Pomper, Smilgin, Bunjes, & Thier,

2016; Jagadisan & Gandhi, 2017), 3) compare different experimental paradigms (Smit,

Van Gisbergen, & Cools, 1987), 4) study eye movement adaptation (Optican & Robin-

son, 1980), 5) characterize micro-saccades (Martinez-Conde, Macknik, & Hubel, 2004;

Martinez-Conde, Macknik, Troncoso, & Hubel, 2009), 6) infer the dynamics of perceptual

decision-making (Seideman, Stanford, & Salinas, 2018), and 7) even evaluate the effect of

opioids (Grace, Stanford, Gentgall, & Rolan, 2010). In clinical research, the main sequence

has been used as diagnostic tool to assess the integrity of the saccadic system. In fact, certain

deviations from normal performance can be used as markers to a specific disease (Troost &

Daroff, 1977; Frohman et al., 2002; Leigh & Kennard, 2004; Ramat et al., 2006). The main
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sequence has been successfully used to investigate eye movements dysfunctions in patients

with 1) palsy of extra-ocular muscles (Metz, Scott, O’Meara, & Stewart, 1970; Garbutt,

Harwood, Kumar, Han, & Leigh, 2003), 2) myasthenia gravis (Yee, Cogan, Zee, Baloh, &

Honrubia, 1976), 3) cerebellar disorder (Selhorst, Stark, Ochs, & Hoyt, 1976), 4) ocular

progressive supra-nuclear palsy (Troost & Daroff, 1977), 5) multiple sclerosis (Frohman

et al., 2002; Bijvank et al., 2019), 6) spino-cerebellar and cerebellar ataxia (Federighi et

al., 2011, 2017), and 7) Parkinson’s disease (Otero-Millan, Schneider, Leigh, Macknik, &

Martinez-Conde, 2013).

Despite the effectiveness of the approach, there is a number of issues to be taken into

account for reliable and repeatable measurements of eye performance. First, kinematic pa-

rameters are usually obtained using numerical and differential method, which are implicitly

sensitive to sampling frequency and noise in the measurement. The original methods re-

quired sampling frequency greater than 330Hz (A. T. Bahill, Kallman, & Lieberman, 1982;

A. T. Bahill & McDonald, 1983; Juhola, Jäntti, & Pyykkö, 1985; Leigh & Zee, 2015), even if

1000 Hz was considered desirable (A. T. Bahill et al., 1975, 1982; A. T. Bahill & McDonald,

1983). Such sampling frequency was considered necessary to obtain reliable numerical mea-

surements from a movement characterized by rapid dynamics, such as that of the eyes. This

to prevent underestimating peak velocity and duration and misjudging the main sequence.

Subsequent and more robust algorithms have been shown to be effective down to 200 Hz of

sampling frequency (Inchingolo & Spanio, 1985; Federighi et al., 2011). Second, there is

no general consensus about the mathematical model describing the main sequence. A power

law rule was first used to describe the non-linear growth of peak velocity with saccade ec-

centricity (Yarbus, 1967; Lebedev, Van Gelder, & Tsui, 1996). In fact, peak velocity reaches

a saturated value for large saccades, similarly to an exponential function (A. T. Bahill et al.,

1975; Baloh et al., 1975; Smit et al., 1987; Leigh & Zee, 2015). Aiming at an actual and

effective use of the main sequence in clinics, one should consider models characterized by

robustness and generalization capability, in order to provide a tool to compare inter- and

intra-subject variability. . Third, the recent years have seen a rapid advancement and wide

spread of eye-tracking technology (see (Gibaldi, Vanegas, Bex, & Maiello, 2017) as review).
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There is a number of eye-tracking devices, available off the shelf, that generally work at sam-

pling frequencies much lower than 330 Hz, either for research (e.g. Pupil Labs, Tobii Pro

devices like Glassess2, Nano and XL, the GazePoint GP3), or for gaming, virtual reality and

human-computer interaction (e.g. Tobii 4C, TheEyeTribe (discontinued), 7invensun aSee).

In this work, we provide a standard methodology to characterize oculomotor perfor-

mance. Eye movements are measured either with sequential lab stimulation or during a

quick and non-fatiguing procedure of natural image exploration. The parameters of saccade

kinematics are obtained using a modeling approach, so that their estimates are robust to

noise and are not affected by low sampling frequencies down to ≈50 Hz. The main se-

quence is then characterized using different models proposed in literature. Specifically, we

focus on a 1-parameter model to obtain a simple and compact representation of oculomotor

performance, to allow for a direct numerical comparison with normative data. The proposed

methodology is robust and repeatable but also non-fatiguing, fast and easy-to-use. The ap-

proach is released in the form of a software toolbox available for public use.

2 Materials and methods

The proposed methodology is based on two steps of analysis. We will first describe methods

to obtain robust estimations of saccadic kinematic parameters, reliable also for low temporal

sampling frequencies. Then, we will evaluate the estimation capability of the selected mod-

els with an extensive battery of tests, so to provide contextual guidelines for model selection.

The methodology will be tested on two datasets, one containing eye traces acquired during

a sequential and controlled lab stimulation (Exp. 1), and a second one acquired during free

visual exploration of a natural image (Exp. 2).

2.1 Evaluating Saccade Parameters

A number of parameters can be directly extracted from a single saccade to analyze the ocu-

lomotor performance (Becker, 1989). Here we will focus on start and end points, duration,

https://pupil-labs.com/
https://www.tobiipro.com/product-listing
https://www.tobiipro.com/product-listing
https://www.gazept.com/product/gazepoint-gp3-eye-tracker/
https://gaming.tobii.com/product/tobii-eye-tracker-4c/
http://theeyetribe.com/
http://www.aglass.com/
https://sourceforge.net/projects/ema-toolbox/
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Fig. 1: A. Example of model fitting and parameter computation for a single saccade. Position (top)
and velocity (bottom) profiles of a saccade. The red dots represent samples from the eye-tracking device.
A velocity threshold of 50 deg/sec is used to compute the start and end points of the saccade, from which
the amplitude and duration. The velocity profile is computed using a two-point central difference algorithm,
and the peak velocity is the maximum sample in the profile. The blue solid line is computed using the fit-
ting approach. The start and end point are the 2% and 98% of the amplitude, from which the amplitude and
duration. The velocity profile is an analytic derivative of the fitted Sigmoid, and provides sub-sample resolu-
tion to compute peak velocity. B. Example of the main sequence for amplitude-peak velocity (top) and
for amplitude-duration (bottom). Red dots represent the kinematic parameters computed with a standard
sampling approach, while blue dots are the same data but computed with the fitting approach.

amplitude and peak velocity. A careful, repeatable and robust estimation of these parameters

is required for their use, either in clinics or in research.

Start and End Point. A standard methodology consists in using a velocity/acceleration

threshold to mark the start and end points of the saccade. Common values for the velocity

threshold can range between 5 and 50 deg/sec (Baloh et al., 1975; Inchingolo & Spanio,

1985; Federighi et al., 2011), using lower values for oculomotor studies and higher values

for cognitive studies.

This methodology results in a systematic underestimation of the saccadic duration (see

Fig. 1). If reducing the threshold might seem a reasonable way to increase accuracy, a low

threshold would be more sensitive to noise in the data (A. Bahill, Brockenbrough, & Troost,

1981). Moreover, in case of a saccadic over/undershoot, this method would not be able to

distinguish between the main and the corrective saccade, resulting in a delayed end point and
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overestimating saccade duration (A. T. Bahill et al., 1975). The problem would be mitigated

using a relative threshold, like the 5% of the saccadic peak velocity (A. Bahill et al., 1981).

Nevertheless, any threshold approach would be affected by sampling frequency. The

threshold crossing would very seldom match the time of a sample acquisition, but would

happen between samples, resulting in an over/underestimation of saccade duration (Andersson,

Nyström, & Holmqvist, 2010).

Duration. The measurement of the saccadic duration will rely on the estimated start

and end points of the saccade. Accordingly, it is equally affected by the same problems of

thresholding and sampling frequency. Exemplifying, on a saccade of 10 degrees, a sampling

frequency of 200 Hz would result in an error ±5 ms, which is roughly 12% of its duration.

Besides, if we reduce the sampling frequency to 50 Hz, the error would become ±20 ms

which is close to 50% of the saccade duration.

Amplitude. Similarly, the estimation of saccadic amplitude will derive from the esti-

mated start and end points of the saccade. The threshold approach will result in a systematic

underestimation of the amplitude (see Fig. 1). Nevertheless, saccadic kinematics is char-

acterized by a smooth acceleration and deceleration, so the movement performed near the

start and end point of the saccade can be considered negligible with respect to the whole

amplitude.

Peak Velocity. The easiest measure of eye velocity is a differentiation of the eye position

signal using a two-point central difference algorithm (Schmidt, Abel, DellOsso, & Daroff,

1979):

Vp(t) =
X(t)−X(t− 1)

∆t
(1)

This algorithm has shown to provide reliable results only under the condition of a sampling

frequency of 330Hz (A. T. Bahill et al., 1982; A. T. Bahill & McDonald, 1983; Juhola et

al., 1985; Leigh & Zee, 2015), even if 1000 Hz was considered desirable (A. T. Bahill et al.,

1975, 1982; A. T. Bahill & McDonald, 1983). This technique has two main drawbacks. First,

the numerical derivative is intrinsically highly sensitive to noise. Depending on the device,

it might be difficult or even impossible to characterize and remove the measurement noise.

Furthermore, filtering the noise will anyway affect the estimated velocity, and specifically
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the peak velocity. Second, the method is highly sensitive to sampling frequency. The instant

of peak velocity usually falls between two samples, resulting in a underestimation of the

peak magnitude (see Fig. 1).

Along the years, more complex and robust techniques have been proposed, like an eight-

point central difference derivative algorithm (Inchingolo & Spanio, 1985; Federighi et al.,

2011). These techniques have been proven robust down to a sampling frequency of 200Hz

(Inchingolo & Spanio, 1985; Juhola et al., 1985). A more recent work (Wierts, Janssen, &

Kingma, 2008) showed how a lower sampling frequency can be effective for large saccades.

2.2 Saccade Fitting

Starting from the seminal studies in the field (D. Robinson, 1964; A. T. Bahill et al., 1975;

Baloh et al., 1975), saccadic movements have been considered highly stereotyped. The eye

starts moving smoothly, has an intense acceleration and a less intense deceleration to the

end point of the trajectory.

From this perspective, it is reasonable to exploit model fitting to describe the saccadic

trajectory. A possible approach is to fit the velocity profile (e.g., see (Smit et al., 1987)), but

it is worth considering that velocity is a derived measurement and amplifies all the possible

sources of noise. Here, we propose to directly fit a model to the spatial trajectory of the

eyes. Such an approach is expected to be implicitly less prone to measurement noise, since

the fitting algorithm providing a robustness to outlier samples. The saccade profile is fitted

using a Sigmoid function in the form of the Hill’s Equation (Goutelle et al., 2008):

ŷ(t) = E0 + (EMAX − E0)
tα

(E50 + t)α
(2)

The trend of the Sigmoid curve is well suited to describe many natural processes that move

from a steady state, accelerating rapidly and decelerating smoothly while approaching a sat-

urated value. In our formulation E0 and EMAX are the start and end point of the saccade,

E50 is the time of half saturation, e.g. half of saccade trajectory, and α is a nonlinear param-

eter defining the slope of the curve. The fitting is performed using a Levemberg-Marquadt
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1-Parameter 2-Parameter 3-Parameter
SLOPE LINE CUBIC

y = ax y = ax+ b y = ax2 + bx+ c

SQRT(Lebedev et al.,
1996)

POWER LAW (Yarbus,
1967; Lebedev et al.,

1996; Garbutt et al., 2003)

EXPONENTIAL

(A. T. Bahill et al., 1975;
Baloh et al., 1975; Leigh

& Zee, 2015)

y = V
√
x y = mxV y = V (1− e−

(x−A0)

k )

FIXED SQRT LOG-LOG SIGMOID

y = V A+ V
√
x−Ath y = eV log(x)+Q y = Amax

(1+(V 50/x)α)

V A = Vpeak(Ath)

Table 1: Models used to fit the main sequence. The Table reports the equations of the nine
models we assessed as estimator of the saccadic main sequence. These models have been
grouped in three categories, i.e. models using 1, 2 or 3 parameters.

nonlinear least squares minimization algorithm. The reliability of the fitting is enhanced

by providing a plausible initial estimate of Sigmoid parameters (Gibaldi, Barone, Gavelli,

Malavasi, & Bevilacqua, 2015).

This model provides a compact representation of the saccade profile, and it has been

proven functional for an accurate identification of the start and end point of the saccade

and to measure intra-saccadic vergence (Gibaldi & Banks, 2019), as well as to provide

fine kinematic characterization of eye dominance (Gibaldi, Canessa, & Sabatini, 2016). The

proposed model fitting approach presents a number of advantages: 1) saccade kinematics

is obtained by analytical solutions rather than by numerical methods, which are prone to

measurement noise; 2) the procedure is implicitly robust to outlier samples, 3) analytical

solutions are relatively independent of sampling frequency and are able to provide sub-

sample resolution.
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2.3 Models of the Main Sequence

Different models have been proposed to describe the main sequence, reported in Tab. 1,

but no general consensus has been reached towards one model or another. In this work, we

specifically focus on the relation between amplitude and peak velocity.

A power law model (POWER LAW) is quite effective in describing the non-linear growth

of peak velocity with saccade eccentricity (Yarbus, 1967; Lebedev et al., 1996), and it has

been successfully used to identify reduced performance on patients (Garbutt et al., 2003).

Peak velocity increases with saccadic amplitude, and reaches a saturated value for saccades

larger than 15-20 degrees. This trend can be well described by an exponential function (EX-

PONENTIAL). This model has been extensively used either in research (A. T. Bahill et al.,

1975; Baloh et al., 1975; Smit et al., 1987; Leigh & Zee, 2015) and in clinics (Ramat et al.,

2006; Federighi et al., 2011, 2017). The trend is well modelled also by a Sigmoid equation

(Goutelle et al., 2008) (SIGMOID), even if it is generally not used in eye movement research.

Another model, extensively used in literature, requires a double logarithmic transformation

(LOG-LOG) (A. T. Bahill et al., 1975; A. Bahill et al., 1981; Bollen et al., 1993; Garbutt

et al., 2003). In this space, the main sequence becomes linear in a range of approximately

1-15 degrees. A relatively newer approach uses a simpler model (Lebedev et al., 1996), a

square root equation (SQRT), to increase the robustness of the estimated main sequence.

An extension of this model (FIXED SQRT) exploits constants computed directly from the

data, like the average peak velocity for 1 degree saccades. Also, for small saccades the re-

lationship between amplitude and peak velocity is roughly linear. We then used a simple

slope (SLOPE), but also a line equation (LINE) to fit the data. Finally, we also tested a cubic

equation (CUBIC) to assess the usability of simple polynomial functions.

While comparing these models, one should be aware that a single data set might provide

a limited perspective of model performances. An effective model should not just be robust

and reliable, but should also allow to assess inter- and intra-subject variability, or to com-

pare different experimental conditions. To this aim, we grouped the selected models with

respect to the numbers of parameters, from one to three, as a measure of their complexity
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(see Tab. 1). Aiming at using compact models, we excluded those with a larger number of

parameters (e.g. see (Duchowski et al., 2017)).

2.4 Experimental Design

Subjects Nine subjects (six females and three males), ages 24–39 years (average 29.5, SD

5.1), participated. All but one were unaware of the experimental hypotheses. The subject

protocol was approved by the Institutional Review Board at the University of California,

Berkeley. All subjects gave informed consent before starting the experiment.

Experimental Setup Subjects sat in front of a large frontoparallel LCD screen (125 ×

77cm) with HD resolution (1920×1080 pixels). A bite bar was used to stabilize the subject’s

head. A custom sighting device was used to accurately position the eyes relative to the screen

(Hillis & Banks, 2001), so that the normal from the center of the display screen intersected

the midpoint of the subject’s inter-ocular axis. The distance from the display screen was

100 cm. The experiment was performed in a dark room, with the screen being the only

light source. The binocular gaze direction was measured with a head-mounted eye tracker

(Eyelink II), using pupil and corneal reflections at 250 Hz. The visual stimuli were presented

using Matlab with the Psychtoolbox (Brainard, 1997; Kleiner et al., 2007) and a toolbox for

integration of the Eyelink (Cornelissen, Peters, & Palmer, 2002).

Eye Movement Calibration A 13-point calibration procedure was first used to calibrate

the eye tracker at the beginning of each session. The calibration targets subtended 0.6 de-

grees. The calibration area was adapted depending on the portion of the screen actually used

in the experiment (Gibaldi, Vanegas, et al., 2017). The calibration was followed by a 9 point

validation procedure. Calibration was repeated to obtain a mean error less than 0.5 degrees,

to ensure accuracy. The calibration target was designed to match the luminance of the ex-

periment target, in order to improve eye-tracking accuracy (Drewes, Masson, & Montagnini,

2012). After calibration, subject initiated stimulus presentation by button press.

Experiment 1: Sequential Saccade Testing Visual stimulation was provided as a Mal-

tese cross at different location on the screen. The cross covered 1 degree of visual field. At

each trial, the target was first shown in front of the dominant eye. After 0.6–1sec, the cross
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jumped left or right to a peripheral position and remained there for 1sec. The subject was

instructed to follow the target as quickly and accurately as possible. The tested eccentricities

were ±1, ±2, ±4, ±8, ±12, ±16 or ±24degrees. The peripheral target was presented 10

times at each eccentricity, for a total of 140 trials per session. To discourage anticipatory

movements, the presentation order was random and the time interval between a button press

and the displacement of the target was variable.

In order to evaluate the test-retest reliability, each subject repeated the experiment on

two different days. The test was performed approximately at the same hour (between 9:00am

and 10:00am), to reduce possible differences in the oculomotor performance due to fatigue

(Schmidt et al., 1979; Galley, 1989; Bollen et al., 1993; Straube, Robinson, & Fuchs, 1997;

Di Stasi, Catena, Cañas, Macknik, & Martinez-Conde, 2013).

Experiment 2: Free Gaze Exploration Visual stimulation was provided using rendered

images of natural environments. Similarly to Exp. 1, the session started with a calibration

procedure for the eye tracker. The calibration encompassed the whole screen area. After that,

subjects initiated stimulus presentations with a button press. At each trial, a Maltese cross

was first shown in the center of the screen for 1 sec. The visual stimuli consisted in twenty

naturalistic scenes of peripersonal space (Gibaldi, Canessa, & Sabatini, 2017; Canessa et

al., 2017). Each image was presented for 20 seconds on the screen, while recording eye

movements with the eye tracker. The subject was instructed to explore the scene with the

gaze.

2.5 Data Analysis

2.5.1 Saccade Detection

The gaze data obtained by the two experiments were analyzed in the following way. The

pixel position on screen was first transformed in azimuth and elevation angles. A prelimi-

nary estimation of eye velocity and acceleration was performed using a two-points central

difference algorithm. Saccades where detected considering a threshold on 20 deg/sec on

the velocity traces. Next, we marked the preceding and the following fixations. The trajec-
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tory of the saccade was then computed as the straight motion from one fixation to the next.

For Exp. 1 we considered only the first saccade after target onset, disregarding possible

corrective saccades and mis-fixations. For Exp. 2, we defined a threshold of 1 degree of ec-

centricity to detect possible micro-saccades (Martinez-Conde et al., 2009), and we discarded

them from the dataset. The saccade kinematic parameters were then computed using either

absolute thresholds or using the proposed Sigmoid fitting.

2.5.2 Varying the Sampling Frequency

The original gaze data we collected have a sampling frequency of 250 Hz. In order to be

able to make a comparison between the proposed processing procedures on data sampled

at lower frequencies, the gaze data were then sub-sampled at increasing factors from 1:2 to

1:8. The resulting data have a sampling frequency of 125, 83.3, 62.5, 50, 41.7, 35.7 and 31.3

Hz.

Accordingly, we assessed the robustness of the computed saccadic parameters at de-

creasing sampling frequencies, specifically for amplitude, duration and peak velocity of

the saccade. We used gaze data from Experiment 1, assuming the parameters computed at

250Hz as gold standard. We then used a two-sided Wilcoxon rank sum test to compare the

medians of the parameters measured on the original and sub-sampled traces.

2.5.3 Model Fitting Approach

The fitting of a parametric model to the main sequence is usually performed on a large set

of saccades. This ensures that the fitted model does not depend on possible outliers present

in the data, and that the fitting is actually representative of the subject’s performance. Also,

depending on the experimental procedure, saccadic range might vary considerably. While

in natural viewing most of saccades are shorter than 15 degrees (Sprague, Cooper, Tosic,

& Banks, 2015), lab tests for main sequence usually require saccades of larger amplitudes,

even up to 90 degrees (Baloh et al., 1975). It is worth considering that, depending on the

pathology, patients might not be able to stand a long and fatiguing procedures. Similarly,

patients may have difficulty in initiating saccades and the movements themselves may be
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small, preventing the possibility to perform comparisons with data sets from control subjects

(Garbutt et al., 2003).

We then believe necessary to evaluate the reliability of model fitting to perform a robust

and reliable estimation of the main sequence. To this purpose, we used a bootstrap analysis

to obtain statistics of the goodness-of-fit (adjusted coefficient of variation, R2), and of the

repeatability of the measurement (Minimum Absolute Percentage Error, MAPE (Tofallis,

2015)). Each boot size was repeated 1000 times to obtain statistics of the estimator perfor-

mance. The MAPE was computed between each of the fitted curve and every other curve

in the boot. It represents the percentage change between two estimations performed on two

different bootstrap sample. Note that a high value of R2 generally represents a good fit,

whereas a low MAPE represents a set curves of similar curves.

The approach aims at defining guidelines for a minimal procedure with limited invasive-

ness. We focused our analysis on 1) ideal range of saccade amplitude, 2) minimum number

of saccades and 3) test-retest reliability.

Saccade Amplitude The reliability of the model fitting was evaluated considering sub-

sets of saccades of increasing ranges, within 5, 10, 15 20 and 25 degrees of eccentricity.

For each range, we computed the goodness-of-fit for each model (R2). The goodness-of-fit

was computed on the whole dataset (e.g. saccades at all eccentricities), not just on those

used to compute the fit. Exemplifying, each model was fitted over an eccentricity range of

5 degrees, then the obtained R2 was computed also on the subsets of saccades ranging 10,

15 20 and 25 degrees. In this way, we evaluated to which extent a model computed on a

limited eccentricity range is able to capture and to describe the general performance of the

oculomotor system. These values differ from the tested eccentricities (±1, ±2, ±4, ±8,

±12, ±16 or ±24 deg) to ensure that each group contains enough samples to allow for an

effective bootstrap analysis.

Minimum Number of Saccades To test the reliability of the estimation at increasing

number of saccades, we performed a bootstrap analysis considering bootstrap samples of

increasing size, from 10 to 100. At each bootstrap we computed the goodness-of-fit of model
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(R2) and the MAPE. We used the Hotelling’s T-Squared multivariate test to compare sets of

parameters computed for different boot sizes.

Test-Retest Reliability The reliability of the approach was evaluated by comparing the

results obtained from to the first and the second recordings of Exp. 1. For each boot size, we

computed the MAPE between each fit from the first recording and all the 1000 fits from the

second recording. The resulting 1000×1000 values where then used to compute the median

and the first and third quartiles of the MAPE.

2.5.4 Oculomotor Performance in Natural Viewing

We wanted to evaluate if a free viewing task, like that in Exp. 2 is suited to estimate the

main sequence with the same effectiveness provided by sequential lab testing of Exp. 1. To

this aim, we exploited the same analysis used to quantify the test-retest reliability between

Exp. 1.1 and Exp. 1.2. In this way, we assessed to which extent a simple, natural and non-

fatiguing task is effective in characterize oculomotor performance.

It is well documented that horizontal saccades are generally faster than vertical and

oblique ones, due to a higher performance of the horizontal recti muscles (Vergilino-Perez

et al., 2012; Gibaldi et al., 2016). In order to have two sets of data that are actually compa-

rable, we first selected horizontal saccades from Exp. 2 (±15 deg from the horizontal). The

bootstrap analysis was performed also on the whole set of saccades, i.e. directed all around

the clock, from Exp. 2. For each bootstrap sample size, we computed the MAPE between

each fit from Exp. 1 and all the 1000 fits from Exp. 2. The resulting values where again used

to compute the median and the first and third quartiles of the MAPE.

3 Results

3.1 Saccade Trajectory Fitting

This sub-section of the Results analyzes the suitability of the fitting approach to saccadic

trajectories together with the influence of sampling frequency.
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Exp. 1.1 Exp. 1.2 Exp. 2
SBJ1 0.9987± 0.0020 0.9902± 0.0017 0.9971± 0.0153
SBJ2 0.9990± 0.0119 0.9905± 0.0015 0.9963± 0.0195
SBJ3 0.9976± 0.0023 0.9984± 0.0026 0.9974± 0.0053
SBJ4 0.9981± 0.0032 0.9946± 0.0044 0.9881± 0.0085
SBJ5 0.9977± 0.0053 0.9969± 0.0018 0.9979± 0.0051
SBJ6 0.9867± 0.0041 0.9952± 0.0015 0.9898± 0.0032
SBJ7 0.9965± 0.0058 0.9944± 0.0022 0.9949± 0.0028
SBJ8 0.9951± 0.0048 0.9925± 0.0020 0.9937± 0.0053
SBJ9 0.9981± 0.0039 0.9944± 0.0013 0.9952± 0.0043

Table 2: Goodness of fit for saccadic trajectories. The Table reports the goodness of fit
(R2) for the fitting the saccade trajectory with a Sigmoid function. Mean and standard devi-
ation are computed for each subject for the two recordings of Exp. 1 and for Exp. 2.

Goodness-of-fit - Fig. 2 shows the effectiveness of the approach for saccades of different

amplitudes, randomly chosen from all subjects of Exp. 1. The Sigmoid model is able to

represent the trajectory of the saccade regardless its amplitude. It is evident how saccade

duration, highlighted by the gray patch, increases with saccadic amplitude. Since the fit is

based on the central part of the saccade, only, it is not affected by the presence of possible

corrective saccades and overshoots. To quantify the goodness-of-fit we used the coefficient

of variation (R2). Table 2 reports the median and inter-quartile range of R2, computed for

each subject for Exp. 1 and Exp. 2. The average value of R2 is very high and has a limited

variability, showing how the proposed model provides an effective description of saccade

trajectories. No significant difference in the goodness-of-fit is present between the sequential

saccade test (Exp. 1) and the natural exploration (Exp. 2).

Sampling Frequency - Fig. 3 shows amplitude, duration and peak velocity of a set of

saccades computed at different sampling frequencies. Red dots refer to the absolute thresh-

old method, while blue circles refer to the Sigmoid fitting. Table 3 reports the p-value of

the Wilcoxon rank sum test, against the null hypothesis that parameters measured on the

original and sub-sampled traces come from a distribution with the same median. Statisti-

cally significant values are highlighted in bold characters. The Table also reports the R2

computed between the parameters measured on the original sampling frequency and those

measured on the subsampled traces. For the absolute threshold method, it is evident how the

duration suffers from sampling problems, which are more and more intense when decreasing
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of saccades, randomly chosen from Exp. 1, with the target eccentricity ranging from 1 to 24 degrees. The
original data samples (red circles) are shown against the fitted Sigmoid (blue line). The vertical red line
locates the instant of peak velocity while the gray patch shows the saccade duration.

the sampling frequency. Likewise, reducing the sampling frequency results in a systematic

underestimation of the peak velocity, which is already present at 125 fps. TheR2 also shows

how duration is the parameter that suffers most from low sampling frequencies. As expected,

the fitting approach is able to provide an estimation of the kinematic parameters of the sac-

cade which is robust to low sampling frequencies. As a matter of fact, the estimation of

amplitude, duration and peak velocity are reliable down to 50 Hz of sampling frequency.
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numerical computation method, while blue circles is data computed from analytic solution of the Sigmoid
fitting.

SAMPLING FREQUENCY [Hz]
250 125 83.3 62.5 50 41.7 35.7 31.3

AMPLITUDE
num p 0.0 0.034 0.319 0.141 0.023 0.565 0.886 0.933

R2 1.000 0.998 0.997 0.997 0.995 0.994 0.992 0.989

fit p 0.0 0.009 0.013 0.034 0.042 0.041 0.052 0.122
R2 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.999

DURATION
num p 0.0 0.493 0.834 0.999 ≈ 1 ≈ 1 ≈ 1 ≈ 1

R2 1.000 0.847 0.802 0.772 0.761 0.675 0.661 0.462

fit p 0.0 0.021 0.043 0.037 0.045 0.827 0.740 0.996
R2 1.000 0.993 0.979 0.956 0.902 0.839 0.887 0.543

PEAK VEL.
num p 0.0 0.996 0.999 ≈ 1 ≈ 1 ≈ 1 ≈ 1 ≈ 1

R2 1.000 0.932 0.924 0.910 0.902 0.906 0.893 0.892

fit p 0.0 0.019 0.013 0.049 0.037 0.803 0.443 0.966
R2 1.000 0.997 0.994 0.981 0.930 0.896 0.938 0.864

Table 3: Statistical assessment of sampling frequency. The Table shows the results of a
statistical test to assess the robustness of the measurements of saccadic parameters (ampli-
tude, duration and peak velocity) at decreasing sampling frequency of the eye position data,
from 250 Hz (original), down to 31.3 Hz. The used eye movement data are those from Ex-
periment 1. For each parameter, the Table reports the p-value of a two-sided Wilcoxon rank
sum test, against the null hypothesis that parameters measured on the original and subsam-
pled traces come from a distribution with the same median. Statistically significant values
are highlighted in bold characters. The Table also reports the coefficient of determination
R2, computed between the parameters measured on the original sampling frequency and
those measured on the subsampled traces.

3.2 Modeling the Main Sequence

In this sub-section of the Results we comparatively analyze the nine estimators proposed to

model the main sequence (see Tab. 1).
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Saccadic Amplitude - Each panel in Fig. 4 shows the result of the fitting for the nine

models considered. The fitting has been performed considering different eccentricity ranges

for the saccades (see color code in the legend). The solid lines represent the median curves

among the 1000 bootstrap, while the shaded areas show the 95% confidence interval. Fig. 5

shows the R2 for the fitting. The x-axis represents the saccadic range used to fit the models,

while the y-axis is the range used to compute the R2. The results clearly show that for the

SLOPE, LINE and CUBIC, but also for the POWER LAW and LOG-LOG models, the estimated

model is highly affected by the range considered. This means that these models can be

considered reliable at most for the range used to compute the fitting, showing that they

have limited generalization capabilities at different saccadic ranges. Conversely, the SQRT

and FIXED SQRT models provide results that are almost independent of the saccadic range

considered. In fact, the result obtained on saccades between 0 and 5 degrees is able to predict

the performance of the system at all the considered ranges, also providing a high value of

R2 at al ranges. The estimation capability of these two models is generally high and slightly

reduced for short saccades (bottom row). The EXPONENTIAL and SIGMOID models have an

explanatory capability that is almost constant at any range, even if it is slightly lower for

saccades smaller than 5 degrees.

Minimum number of saccades - Fig. 6 shows the distribution of R2 of the fitting

computed over 1000 bootstraps for different sizes of the boot, from 10 to 100 samples.

Fig. 7 shows the distribution of MAPE on the same set of data. In both figures, the red line

highlights the maximum of the distribution at each boot size. The white dashed vertical line

represents the boot size beyond which the parameter estimation does not statistically change.

At a first glance, all the models provide high value for R2, above 0.7, and can be con-

sidered good estimators of the main sequence. Not surprisingly, the SLOPE and the LINE

models provide poorer performances, since they attempt to provide a linear approximation

of a non-linear phenomenon. The models with the highest goodness-of-fit are the EXPONEN-

TIAL and the SIGMOID. Again not surprisingly, models using a higher number of parameters

better fit the data. The 3-parameter models provide aR2, which is generally higher than 0.9.

Interestingly, the FIXED SQRT model is able to provide a performance that is comparable
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Fig. 4: Model fitting for saccades at different ranges of eccentricity. Each panel shows the result of the
fitting for the nine models considered, using data ranges according to the legend. Data are from SBJ1, Exp
1.1. For each range, the solid line represents the median curve computed over the 1000 boostraps, while the
shaded area represents the 95% confidence interval.

to the 3-parameter models, even if it relies on a single parameter. While the choice of one

of the 3-parameter models seems to be the more reasonable, it is worth considering that a

higher number of parameters might produce data over-fitting.

Fig. 7 provides a complementary perspective of the results. One goal of a good and gen-

eral estimator is to obtain the same result on a different set of samples from the same distri-

bution, i.e. from the same subject. From this perspective, the MAPE can provide statistics of

the robustness of the estimator with a bootstrap analysis. Contrary to R2, the MAPE shows

a higher variability of the estimator for a higher parameter number. The 1-parameter mod-
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refers to the maximum range of the subset of saccades used to fit the main sequence. The y-axis refers to the
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els have a variability close to 0 with a narrow distribution even for small sample sizes. The

2-parameter models provide a degraded performance for low sample sizes and the MAPE

gradually tends to 0 for increasing sizes. Considering the 3-parameter models, the CUBIC

has a performance comparable to the 1-parameter models. Besides, the SIGMOID and even

more the EXPONENTIAL models show higher values of the MAPE and a large variability.

This is due to a fitting that varies considerably depending on the data used, and can be inter-
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Fig. 6: Goodness-of-fit distribution (R2) at increasing sample size. Each panel shows the density distri-
bution of the R2 of the fitting (y-axis) computed over 1000 bootstraps, for different sizes of the boot from
10 to 100 samples (x-axis). Data are from SBJ1, Exp 1.1. The red line represents the maximum of the distri-
bution at each boot size. The white dashed vertical line represents the number of samples beyond which the
parameter estimation does not statistically change.

preted as a tendency to over-fitting. The results from Figs. 6-7 are summarized by the white

dashed vertical lines, which represent the limit beyond which increasing the number of sac-

cades does not affect the estimation of the main sequence. Exemplifying, for the SLOPE

model, increasing the number of saccades in the bootstrap sample from 70 to 80 provides

an estimation with no significant difference (p < 0.05). The SQRT and FIXED SQRT mod-

els, having a limited variability with respect to the other models, can be considered already

reliable for a sample size of 50.
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3.3 Model Sensitivity and Test-Retest Reliability

A mandatory feature for the proposed approach is the sensitivity to a single set of data. Such

a feature would allow for comparing different recordings of the same test, like Exp 1.1 and

1.2, but also different test condition like those of Exp. 1 and Exp. 2, In this subsection we

will assess the repeatability of the approach, either by repeating the sequential lab testing on

different days, or by comparing the results from lab testing with those form natural viewing.
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Test-Retest in Sequential Saccades - Fig. 8 shows the MAPE computed by comparing

data from Exp. 1.1 and Exp. 1.2, for increasing size of the sample bootstrap (left). The mean

(solid curves) and 1st and 3rd quartiles (whiskers) have been computed between each fit

from the first recording and all the 1000 bootstrap fits from the second recording. From

top to bottom, the three panels show data for the 1-parameter, 2-parameter and 3-parameter

models, according to the legends.

This analysis clearly shows how complex models tend to over-fit data. The increase in

goodness-of-fit (see Fig. 5) comes at the price of a reduced generalization and repeatability

of the measurement. Besides, simpler models are more robust and provide a good repeata-

bility also at small sample numbers, e.g. 50-60 saccades.

Free Natural Gaze Exploration vs Sequential Saccades - Fig. S2 shows the result of

the fitting on data from Exp. 1 (blue) and Exp. 2 (orange), for the nine tested models. Fig. 8,

right, shows the MAPE computed between data from Exp. 1.1, and horizontal saccades

from Exp. 2. We observe how the LINE and SLOPE models provide a different estimate

of oculomotor performance, while the CUBIC model can be considered reliable at small

eccentricities. The POWER LAW, LOG-LOG, EXPONENTIAL and SIGMOID models are able

to provide an estimate that is numerically similar, but derives from set of parameters that are

statistically different between the two sets. Also, the EXPONENTIAL and SIGMOID models

likely result in data over-fitting, as shown by the considerable variability. Again, simple

models, like SQRT and FIXED SQRT, provide the best generalization capabilities. The MAPE

is slightly higher but still comparable to that computed between Exp 1.1 and Exp 1.2 (see

Fig. 8). Thus, these two models are able to provide repeatability of the estimation across the

two methodologies, already for a small boot size.

Tab. 4 reports the estimation of oculomotor performance on the tested subjects, per-

formed with the FIXED SQRT model. As assessed by the test-retest repeatability, the results

form Exp. 1.1 and Exp. 1.2 are almost equivalent. The free gaze task of Exp. 2 (selecting

horizontal saccades only) provides a slightly lower estimate.

Model Sensitivity - As a first qualitative step, the main sequence can be assessed from

numerical data about average amplitude, peak velocity and duration of these saccades, as
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reported in Tab. 5. Fig. 9 shows the result of the fitting of the FIXED SQRT model on data from

Exp. 1, for all nine subjects. It is clear how the fitted curves provide an effective description

of the data, which is representative of each subject. More interestingly, the FIXED SQRT

model can effectively describe the data with a single parameter (see Tab. 4) that captures by

itself the oculomotor performance of each subject.
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Subject ID Exp. 1.1 Exp. 1.2 Exp. 2.0 (hor.) Exp. 2.0
V R2 V R2 V R2 V R2

SBJ1 138.7 ± 1.8 0.857 ± 0.013 138.3 ± 2.1 0.924 ± 0.012 129.7 ± 1.3 0.844 ± 0.004 117.1 ± 4.3 0.923 ± 0.018
SBJ2 138.7 ± 1.7 0.897 ± 0.014 140.2 ± 1.4 0.867 ± 0.005 132.0 ± 1.9 0.925 ± 0.005 121.8 ± 3.7 0.811 ± 0.015
SBJ3 110.4 ± 1.1 0.941 ± 0.004 114.1 ± 1.5 0.922 ± 0.006 121.2 ± 1.9 0.878 ± 0.013 114.5 ± 2.9 0.842 ± 0.011
SBJ4 93.2 ± 0.3 0.919 ± 0.005 87.1 ± 2.1 0.891 ± 0.016 96.1 ± 1.3 0.921 ± 0.014 89.9 ± 1.7 0.913 ± 0.007
SBJ5 100.4 ± 0.6 0.804 ± 0.011 95.6 ± 2.3 0.829 ± 0.020 91.4 ± 0.8 0.940 ± 0.009 81.8 ± 0.9 0.849 ± 0.018
SBJ6 45.4 ± 0.7 0.862 ± 0.013 48.9 ± 0.9 0.812 ± 0.013 47.1 ± 1.2 0.820 ± 0.006 44.3 ± 2.2 0.863 ± 0.009
SBJ7 90.8 ± 2.0 0.923 ± 0.008 88.2 ± 1.8 0.887 ± 0.009 82.5 ± 2.4 0.935 ± 0.011 83.2 ± 2.2 0.852 ± 0.021
SBJ8 77.1 ± 2.3 0.883 ± 0.012 85.1 ± 1.2 0.857 ± 0.013 76.5 ± 0.9 0.941 ± 0.013 72.3 ± 1.8 0.841 ± 0.013
SBJ9 101.7 ± 2.7 0.895 ± 0.007 98.9 ± 3.0 0.897 ± 0.018 103.5 ± 1.6 0.839 ± 0.017 96.2 ± 2.5 0.817 ± 0.011

Table 4: Oculomotor performance computed from the FIXED SQRT model. The Table
reports the parameter V of the FIXED SQRT model of the main sequence (see Tab. 1), to-
gether with theR2. The median and standard deviation have been computed using bootstrap
analysis of 1000 boots, over a sample 100 saccades.

Subject ID Amplitude [deg] Peak Velocity [deg/sec] Duration [ms]
SBJ1 8.80 ± 6.19 408.83 ± 162.35 31.52 ± 14.53
SBJ2 9.08 ± 6.51 413.65 ± 171.42 31.44 ± 15.22
SBJ3 9.86 ± 7.29 300.35 ± 147.23 56.17 ± 24.18
SBJ4 9.58 ± 7.40 290.07 ± 139.37 47.95 ± 22.71
SBJ5 9.37 ± 6.46 370.87 ± 132.20 36.85 ± 22.82
SBJ6 9.03 ± 6.54 160.23 ± 68.23 44.94 ± 20.67
SBJ7 8.91 ± 6.84 295.43 ± 176.46 68.22 ± 25.89
SBJ8 9.42 ± 7.11 281.57 ± 121.97 49.41 ± 27.63
SBJ9 8.96 ± 6.39 358.52 ± 141.46 43.91 ± 27.74

Table 5: Statistics of Saccadic Parameters. The Table reports the mean and standard devi-
ation for amplitude, peak velocity and duration for saccades from Exp. 1.1.

4 Discussion

The main sequence can be employed as a ready-to-use diagnostic tool to assess the integrity

of the saccadic system and to eventually provide an explanation of eye movements disorders

(Leigh & Kennard, 2004; Ramat et al., 2006). In a seminal work (A. Bahill et al., 1981),

the authors suggested that each lab should create its own normative dataset from healthy

subjects. The strong demand for a general approach comes from the recent development

and wide-spread of eye-tracking research, which is demanding standardized and shareable

tools for research and clinical applications. Yet, several issues must be considered to get

reliable and repeatable measurements. To this aim, we addressed a systematic analysis of

the sensitive variables that concur to the collection of robust and reliable measurements,

ranging from the sampling frequency of the device, to the choice of the model for the main

sequence. With this work, we aim to establish a set of guidelines for a standardized approach
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Fig. 9: FIXED SQRT on sequential saccades task. Each panel shows the result of the fitting for the nine
subjects, using the FIXED SQRT model. Data are from Exp 1.1. The solid line represents the median curve
computed over the 1000 boostraps for a boot size of 50 samples, while the shaded area represents the 95%
confidence interval.

to characterize oculomotor performance, which would be robust, general, repeatable and

non-fatiguing.

Sampling Frequency - Traditionally, a sampling frequency of 330Hz or even higher is

recommended to analyze eye movement traces (A. T. Bahill et al., 1982; A. T. Bahill &

McDonald, 1983; Juhola et al., 1985; Leigh & Zee, 2015) to capture the smallest charac-

teristics of eye movements, and specifically to prevent underestimation of the peak velocity.

Though, we claim that such a limit derives from the use of a two-point central difference

differentiation algorithm, which is implicitly sensitive to noise and sampling frequency. As
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a matter of fact, the estimation of saccade kinematics is heavily affected by sampling fre-

quency (see Fig. 3). Being the saccade extent quite short, a low sampling frequency would

provide a sampling period close to the actual saccade duration, thus resulting in a wrong and

systematic underestimation of the peak velocity. In a seminal paper (A. T. Bahill & McDon-

ald, 1983), the authors clearly state that “More complicated algorithms should only be used

if their superior performance has been demonstrated”.

The approach we propose is indeed much more complicated that a two-point differenti-

ation. Nevertheless, it comes with a great advantage: this method allows us to heavily relax

the 330Hz requirement, down to 50Hz. The curve fitting approach mitigates the dependence

of the estimation on the sampling frequency. The Sigmoid model is effective in describing

the saccadic trajectory with high explanatory capability (see Tab. 2). Moreover, relying on

the mathematical model of the saccade trajectory, the kinematic parameters are obtained

with an analytic solution rather than a numerical one. Granted a reasonable accuracy and

precision of the device, the proposed methodology allows using most of commercial low-

cost eye-trackers (e.g. see (Gibaldi, Vanegas, et al., 2017)) for a reliable characterization of

oculomotor performance.

Saccade Range - Our analyses provide clear indications about model selection, depend-

ing on the tested range of saccades. If the saccadic range is limited, e.g. less than 5 degrees,

the SLOPE model provides a reliable estimation of the main sequence. One must be aware

that this model is not capable of generalizing to larger saccadic eccentricities. On the oppo-

site side, the EXPONENTIAL and SIGMOID models provide the highest generalization capa-

bility over saccade eccentricity (see Fig. 4). Despite this, the repeatability is relatively poor.

Such models could be useful with an extensive dataset from the same subject (i.e. a very

large number of saccades), in order to perform a fine characterization of the main sequence.

The model with best generalization and repeatability performances is the SQRT, specifi-

cally in the FIXED SQRT version. Even if the performance at small ranges is relatively poor,

the provided estimation is invariant with respect to the considered range. In fact, the perfor-

mance measured at short saccades is also able to describe the oculomotor performance at

larger saccades, and vice-versa. More than just a high goodness-of-fit, this model provides
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also a small variability within the same bootstrap sample (Fig. 7) and between different

measurements (Fig. 8, left). The FIXED SQRT is then able to provide a general and fine

characterization of oculomotor performance at normal ranges.

Number of Saccade - If a model is characterized by a large variability, it also requires

a large number of saccades for a stable estimation (e.g. see LINE and SLOPE, but also SIG-

MOID and EXPONENTIAL). Provided a reasonable explanatory capability, e.g. a high value

of R2, those who require the least number of saccade are the simple models, e.g.SQRT and

FIXED SQRT. In fact, a limited number of valid saccades (50) is enough to provide a robust

characterization of saccadic performance. The same number is also valid for the free view-

ing task. Since the percentage of horizontal saccades is significantly higher than that for

other orientations (e.g. see (Gilchrist & Harvey, 2006)), a recording time of approximately

two minutes would be a safe time to collect enough samples.

Model Complexity - Following the general principles of model selection, the simplest

models have generally been shown to be the best choice among models at equal perfor-

mance. A higher number of parameters might provide a higher goodness-of-fit (see Fig. 6),

but it comes at the price of a higher complexity and a fit that is more likely to be tailoring

the model to the specific dataset. A simple model with similar explanatory ability produces

more precise predictions and maintains the capability to generalize. Our choice naturally

falls on the FIXED SQRT. Aiming at a normative dataset for human eye movements, this

model provides a single parameter to characterize the oculo-motor performance, thus allow-

ing for simple and direct comparisons.

Visual Fatigue - The sequential testing performed in Exp. 1 provides an accurate char-

acterization of eye kinematics, but the task is quite long (10-15 minutes) and requires an

elevate attention to the subject. Repetitive re-fixations have been shown to cause fatigue and

to slow down saccades (Schmidt et al., 1979; A. Bahill et al., 1981; Straube et al., 1997;

Bollen et al., 1993), and might not be suited for the use with patients. In Exp. 2 we imple-

mented a non-fatiguing and user-friendly task, that is free exploration of natural images. Our

results clearly show that the oculomotor performance measured in free viewing is compara-

ble to the estimation obtained on sequential lab experiments (see Fig. 8). For the use with
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patients, less invasive eye-tracking devices with equivalent precision should be employed,

like desktop eye-trackers (e.g. Eyelink 1000 or SMI Red250), or electro-oculographic de-

vices (Lappe-Osthege, Talamo, Helmchen, & Sprenger, 2010; Lappe-Osthege, Sprenger, &

Helmchen, 2010).

The free viewing procedure provides a simple and non-fatiguing tool for characterizing

the main sequence. Accordingly, it would be well-suited for clinical practice to study eye

movements on fragile subjects like children or neurological patients. Recent studies on non-

collaborative subjects seek to contextually calibrate the device while performing a visual

task (Oakes, 2012; Downey, Pace, Cormack, Stevenson, & Candy, 2018). Thus, the pro-

posed experimental procedure could be implemented in parallel to an implicit eye-tracking

calibration.

Sensitivity - Among the tested models, the SQRT and the FIXED SQRT provide the high-

est sensitivity to data. These models are able to provide a compact and accurate represen-

tation of each dataset, i.e. of the oculomotor performance of each subject (see Fig. 9), with

a high explanatory capability (R2 value always above 0.8, see Tab. 4). The model is able

to evidence a subtle but consistent difference expected comparing oculomotor performance

of reactive and voluntary saccades: the former is slightly faster than the latter (Gremmler &

Lappe, 2017). In fact, the data reported in Tab. 4 show how our approach is able to capture a

higher performance for reflexive saccades, as for Exp. 1, compared to voluntary saccades of

Exp. 2. Moreover, horizontal saccades are more performing than vertical and oblique sac-

cades, due to a higher performance of the horizontal recti muscles (Vergilino-Perez et al.,

2012; Gibaldi et al., 2016). The high sensitivity of the proposed approach, and specifically

the FIXED SQRT model, is able to discriminate such effect (see Fig. S2), as well as to provide

a compact numerical representation of the performance (see. Tab. 4).

Repeatability - Few other studies evaluated the repeatability of the main sequence mea-

surement, and generally showed a high variability. For instance, Bollen and colleagues

(Bollen et al., 1993) showed a large variability in the estimation between two different ses-

sions. According to our analyses, it is worth considering that their experimental paradigm

and their post-processing were not completely suited to the task. First, peak velocity was
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computed with a two-point central difference algorithm with a sampling frequency of 200Hz.

Such sampling frequency is not sufficient to obtain a reliable measurement of peak velocity

(see (A. Bahill et al., 1981), but also Fig. 3). Second, they used the LOG-LOG model over

a dataset of 30 saccades. According to our analyses, the chosen model has a considerable

variability (Fig. 7), and the authors would have needed a dataset of at least double size to

maximize repeatability. The parameters of saccade kinematics have been shown to have a

high repeatability, thus representing an oculomotor signature for a single subject (Bargary

et al., 2017). Also, this is particularly true in natural viewing experiments like pro-saccadic

task (Bijvank et al., 2018). Accordingly, a meta-analysis of these parameters, like the main

sequence, should have similar reproducibility. In fact, we have shown that the measurement

of ocuolo-motor performance is repeatable, also under different experimental conditions

like reactive saccades or voluntary saccades in free viewing. The bootstrap analysis is an

ideal method to assess the quality of the measurement over a single dataset. Also, it is use-

ful to assess iter- and intra-subject variability, as well as to compare different experimental

paradigms. Besides, it is worth considering that cognitive processing can influence the main

sequence, for instance the decision-making under urgency can increase the peak velocity,

thus deviating oculomotor performance from the main sequence (Seideman et al., 2018).

The Shape of the Main Sequence - Three principal trends can be individuated in the

shape of the main sequence, and specifically in the relation between peak velocity and sac-

cadic magnitude: 1) it is roughly linear for small saccades, between 1 degree and 5-10 de-

grees, 2) it has an inflection point between 10 and 20 degrees, and 3) it smoothly reaches

a saturated value for larger saccades. These three characteristics derive from the dynamic

characteristics of the eye plant, like friction of the bulb and muscle contraction speed.

We have shown that the FIXED SQRT model best captures this behavior, but only under

the constraint of saccades larger than 1 degree. Interestingly, this value corresponds also to

the accepted value of micro-saccades amplitude (Martinez-Conde et al., 2009). The curve

we fit is in fact shifted one degree to the right, and starts form the mean peak velocity for 1

degree saccades, i.e. ≈ 40deg/sec.
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This analysis then leads to the question of what the shape of the main sequence might

be for small saccades. Some authors showed that in logarithmic coordinates, the shape is

a linear continuum (Martinez-Conde et al., 2009). Our analysis suggests the presence of

another inflection (in Cartesian coordinates) between 0.5 and 1 degree of amplitude. It would

then be interesting to further investigate the shape of the main sequence, possibly with more

accurate devices, like a Tracking Scanner Laser Ophtalmoscope, in order to achieve a better

accuracy (Sheehy et al., 2012; Bowers, Gibaldi, Alexander, Banks, & Roorda, 2019).

Conclusion - In summary, the proposed methodology provides three major contribu-

tions to the field of eye movement research. First, it showed how the measurement of

ocuolo-motor performance is repeatable under different experimental conditions, endorsing

the main sequence for a stable characterization of oculomotor performance. Second, it pro-

vides an approach that is relatively insensitive to the sampling frequency of the eye-tracking

device, thus allowing the use of some low-cost technologies for an accurate characterization

of oculomotor performance. Third, it provides a thorough assessment of the main sequence

models proposed in literature and provides the rationale for a choice.

Open Practice Statement The code to repeat the data analysis proposed in this paper is

available at: https://sourceforge.net/projects/ema-toolbox/.

The images used as visual stimuli in Experiment 2 are available at:

https://datadryad.org/resource/doi:10.5061/dryad.6t8vq/.
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A Repeatability over experimental conditions

Fig. S2 shows the results from a bootstrap analysis on the nine selected models for the main sequence,

comparing Exp. 1 (blue), with horizontal saccades from Exp. 2 (purple), and saccades in all directions from

Exp. 2 (orange).
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Fig. S2: Test of model fitting on sequential lab testing and free gaze exploration. Each panel shows
the results of the model fitting on data from Exp. 1 (blue), horizontal saccades from Exp. 2 (purple), and
saccades in all directions from Exp. 2 (orange), for the nine tested models. Data are from SBJ1. The median
curve (solid line) and the 1st and 3rd quartiles have been computed from the bootstrap analysis.
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B EMA Toolbox - Eye Movement Analysis

The approach described in this work for the characterization of oculomotor performance has been imple-

mented in a graphic user interface and is released for scientific use. The EMA Toolbox can be downloaded

at https://sourceforge.net/projects/ema-toolbox/. Fig. S3 and S4 show the graphic user

interface with the possible configurations.

The displayed plots are

– Gaze Data panel - The top panel can show the position, velocity or acceleration of the eye traces, for the

left (blue) and/or the right (red) eye. The unit can be pixel, degrees of visual field or normalized screen

coordinates, depending on the configuration. Two sliders below this panel allow to select the desired time

window.

– Main Sequence panel - In the bottom right panel shows, each dot represents the amplitude (x-axis) and

peak velocity (y-axis) of a saccade. The solid lines represent the model fitted to the main sequence, while

the circles represent the samples actually used for the fitting.

– Fixation Density panel - The bottom right panel shows the fixation density map computed from the eye

position. The red rectangle represents the screen size.

The EMA Toolbox offers a number of possible parameters to modify and customize the processing, at

different levels.

– Menu - The button top-left allows to access a menu for the parsing of data files from different eye-

tracking devices. For now, the supported formats are edf/asc (SR Research Eyelink), tsv (SensoMotric

Instrument), and txt.

– Screen panel

– The editable fields allow to define the horizontal and vertical resolution (pixel) and size (mm) of the

screen.

– The editable field allows to set the subject distance from the screen itself. At this level, the subject

is considered at a fixed and constant distance.

– The buttons allow to import/export the screen parameters from/to a ini file.

– Eye Tracking Data panel

– Select Eye panel - The radio-buttons allow to show data for the left (blue), right (red) or both eyes.

– ET format panel - The radio-buttons allow to show data in degrees (default), pixels or normalized

to x and y screen size. and specifically the x and y position of the eye on screen

– ET trace panel - The radio-buttons allow to show eye position (x and y), or velocity, or acceleration

(in degrees only).

– Sampling frequency panel - The editable fields show the original average sampling frequency of

the device, and (if desired) a target frequency for resampling the data. The check-box same bounds

these two values together. The editable fields on the right show and allow to modify the time window

selected with the sliders.

https://sourceforge.net/projects/ema-toolbox/
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– Refresh/Save/Load ET Data - These three buttons allow to refresh the processed data after some

parameter change, save the processed data on disk, and load processed data previously saved.

– Saccade Thresholds panel

– Motion/Velocity/Acceleration - The editable fields allow to set thresholds on motion, velocity, and

acceleration for the identification of saccades.

– Process ET Data - This button starts the processing of eye-tracking data for fitting the temporal

profile on each selected saccade, and extract a number of parameters.

– Save/Load Saccade Data - These buttons save the saccade data on disk, and load data previously

saved.

– Fixation Density panel

– Sampling dominium - This editable field allows to set the numbers of bins to compute the 2D fixation

density histogram. The histogram is computed using a kernel density function (Botev, Grotowski,

Kroese, et al., 2010). For computational purposes, this number is rounded to the highest power of 2.

– Colormap - This pop-up menu allows to choose the color map for the fixation density plot, among

the standard Matlab color maps.

– Axis Equal - This tick-box displays the x and y axis of the panel proportionally scaled by their actual

dimension.

– Process - This button executes the computation of the fixation density map, and it displays it in the

panel to the right. The map is computed using samples between the upper and lower time limits set

by the sliders.

– Export - This button exports the fixation density figure in a standard vector graphic file.

– Main Sequence panel

– Model - This pop-up menu is for the selection of the model to be fitted to the main sequence. The

choice is among the nine models evaluated in this work.

– Minimum and Maximum Amplitude - These editable fields allow to set a upper and lower limit (in

degrees) to select the saccades used to compute the main sequence.

– Time Limit - If the tick-box is not checked, the main sequence will be computed on all the avail-

able saccades identified in the gaze data. Otherwise only those saccades occurring within the time

window selected by the sliders will be used.

– Process - This button executes the computation of the main sequence, and it displays it in the panel

to the right.

– Export - This button exports the main sequence figure in a standard vector graphic file.
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Fig. S3: Computation of the main sequence with the EMA Toolbox. Text...

Fig. S4: Computation of fixation density with EMA Toolbox Text...


	Introduction
	Materials and methods
	Results
	Discussion
	References
	Repeatability over experimental conditions
	EMA Toolbox - Eye Movement Analysis

