Submicroscopic chromosomal alterations usually involve different protein-coding genes and regulatory elements that are responsible for rare contiguous gene disorders, which complicate the understanding of genotype-phenotype correlations. Chromosome band 3p26.3 contains 3 genes encoding neuronal cell adhesion molecules: CHL1, CNTN6, and CNTN4. We describe 2 boys aged 8 years and 11 years mainly affected by intellectual disability and autism spectrum disorder, who harbor a paternally inherited 3p26.3 microdeletion and a 3p26.3 microduplication, respectively. Both anomalies involved only the CNTN6 gene, which encodes contactin 6, a member of the contactin family (MIM 607220). Contactins show pronounced brain expression and function. Interestingly, phenotypes in reciprocal microdeletions and microduplications of CNTN6 are very similar. In conclusion, our data, added to those reported in the literature, are particularly significant for understanding the pathogenic effect of single gene dosage alterations. As for other recurrent syndromes with variable phenotype, these findings are challenging in genetic counselling because of an evident variable penetrance.
Clinical and Molecular Characterization of Two Patients with CNTN6 Copy Number Variations
Sara Uccella;Thea Giacomini;
2018-01-01
Abstract
Submicroscopic chromosomal alterations usually involve different protein-coding genes and regulatory elements that are responsible for rare contiguous gene disorders, which complicate the understanding of genotype-phenotype correlations. Chromosome band 3p26.3 contains 3 genes encoding neuronal cell adhesion molecules: CHL1, CNTN6, and CNTN4. We describe 2 boys aged 8 years and 11 years mainly affected by intellectual disability and autism spectrum disorder, who harbor a paternally inherited 3p26.3 microdeletion and a 3p26.3 microduplication, respectively. Both anomalies involved only the CNTN6 gene, which encodes contactin 6, a member of the contactin family (MIM 607220). Contactins show pronounced brain expression and function. Interestingly, phenotypes in reciprocal microdeletions and microduplications of CNTN6 are very similar. In conclusion, our data, added to those reported in the literature, are particularly significant for understanding the pathogenic effect of single gene dosage alterations. As for other recurrent syndromes with variable phenotype, these findings are challenging in genetic counselling because of an evident variable penetrance.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.