The OARPAF telescope is an 80-cm-diameter optical telescope installed in the Antola Mount Regional Reserve, in Northern Italy. We present the results of the characterization of the site, as well as developments and interventions that have been implemented, with the goal of exploiting the facility for scientific and educational purposes. During the characterization of the site, an average background brightness of 22.40mAB (B filter) to 21.14mAB (I) per arcsecond squared, and a 1.5″ to 3.0″ seeing, have been measured. An estimate of the magnitude zero points for photometry is also reported. The material under commissioning includes three CCD detectors for which we provide the linearity range, gain, and dark current; a 31-orders échelle spectrograph with R ∼ 8500 to 15,000 and a dispersion of n = 1.39 × 10-6 px-1λ + 1.45 × 10-4 nm / px, where λ is expressed in nm. The scientific and outreach potential of the facility is proven in different science cases, such as exoplanetary transits and active galactic nuclei variability. The determination of time delays of gravitationally lensed quasars, the microlensing phenomenon, and the tracking and the study of asteroids are also discussed as prospective science cases.
Commissioning and improvements of the instrumentation and launch of the scientific exploitation of OARPAF, the Regional Astronomical Observatory of the Antola Park
Ricci D.;Tosi S.;Cabona L.;Righi C.;La Camera A.;Marini A.;Domi A.;Balbi E.;Ancona M.;Boccacci P.;Bracco G.;Cardinale R.;Pallavicini M.;Petrolini A.;Schiavi C.;Zappatore S.;
2021-01-01
Abstract
The OARPAF telescope is an 80-cm-diameter optical telescope installed in the Antola Mount Regional Reserve, in Northern Italy. We present the results of the characterization of the site, as well as developments and interventions that have been implemented, with the goal of exploiting the facility for scientific and educational purposes. During the characterization of the site, an average background brightness of 22.40mAB (B filter) to 21.14mAB (I) per arcsecond squared, and a 1.5″ to 3.0″ seeing, have been measured. An estimate of the magnitude zero points for photometry is also reported. The material under commissioning includes three CCD detectors for which we provide the linearity range, gain, and dark current; a 31-orders échelle spectrograph with R ∼ 8500 to 15,000 and a dispersion of n = 1.39 × 10-6 px-1λ + 1.45 × 10-4 nm / px, where λ is expressed in nm. The scientific and outreach potential of the facility is proven in different science cases, such as exoplanetary transits and active galactic nuclei variability. The determination of time delays of gravitationally lensed quasars, the microlensing phenomenon, and the tracking and the study of asteroids are also discussed as prospective science cases.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.