Among the innovative technologies utilized for the treatment of contaminated soils, the use of green surfactants appears to be a biocompatible, efficient, and attractive alternative, since the cleaning processes that normally use synthetic surfactants as additives cause other problems due to toxicity and the accumulation of by-products. Three green surfactants, i.e., two biobased (biobased 1 and biobased 2) surfactants produced by chemical synthesis and a microbial surfactant produced from the yeast Starmerella bombicola ATCC 22214, were used as soil remediation agents and compared to a synthetic surfactant (Tween 80). The three surfactants were tested for their ability to emulsify, disperse, and remove different hydrophobic contaminants. The biosurfactant, which was able to reduce the water surface tension to 32.30 mN/m at a critical micelle concentration of 0.65 g/L, was then used to prepare a commercial formulation that showed lower toxicity to the tested environmental bioindicators and lower dispersion capacity than the biobased surfactants. All the green surfactants showed great emulsification capacity, especially against motor oil and petroleum. Therefore, their potential to remove motor oil adsorbed on different types of soils (sandy, silty, and clay soil and beach sand) was investigated either in kinetic (flasks) or static (packed columns) experiments. The commercial biosurfactant formulation showed excellent effectiveness in removing motor oil, especially from contaminated sandy soil (80.0 +/- 0.46%) and beach sand (65.0 +/- 0.14%) under static conditions, while, in the kinetic experiments, the commercial biosurfactant and the biobased 2 surfactant were able to remove motor oil from all the contaminated soils tested more effectively than the biobased 1 surfactant. Finally, the S. bombicola commercial biosurfactant was evaluated as a soil bioremediation agent. In degradation experiments carried out on motor oilcontaminated soils enriched with sugarcane molasses, oil degradation yield in the sandy soil reached almost 90% after 60 days in the presence of the commercial biosurfactant, while it did not exceed 20% in the presence of only S. bombicola cells. These results promise to contribute to the development of green technologies for the treatment of hydrophobic pollutants with economic gains for the oil industries.
Application of Green Surfactants in the Remediation of Soils Contaminated by Hydrocarbons
Converti, Attilio;
2021-01-01
Abstract
Among the innovative technologies utilized for the treatment of contaminated soils, the use of green surfactants appears to be a biocompatible, efficient, and attractive alternative, since the cleaning processes that normally use synthetic surfactants as additives cause other problems due to toxicity and the accumulation of by-products. Three green surfactants, i.e., two biobased (biobased 1 and biobased 2) surfactants produced by chemical synthesis and a microbial surfactant produced from the yeast Starmerella bombicola ATCC 22214, were used as soil remediation agents and compared to a synthetic surfactant (Tween 80). The three surfactants were tested for their ability to emulsify, disperse, and remove different hydrophobic contaminants. The biosurfactant, which was able to reduce the water surface tension to 32.30 mN/m at a critical micelle concentration of 0.65 g/L, was then used to prepare a commercial formulation that showed lower toxicity to the tested environmental bioindicators and lower dispersion capacity than the biobased surfactants. All the green surfactants showed great emulsification capacity, especially against motor oil and petroleum. Therefore, their potential to remove motor oil adsorbed on different types of soils (sandy, silty, and clay soil and beach sand) was investigated either in kinetic (flasks) or static (packed columns) experiments. The commercial biosurfactant formulation showed excellent effectiveness in removing motor oil, especially from contaminated sandy soil (80.0 +/- 0.46%) and beach sand (65.0 +/- 0.14%) under static conditions, while, in the kinetic experiments, the commercial biosurfactant and the biobased 2 surfactant were able to remove motor oil from all the contaminated soils tested more effectively than the biobased 1 surfactant. Finally, the S. bombicola commercial biosurfactant was evaluated as a soil bioremediation agent. In degradation experiments carried out on motor oilcontaminated soils enriched with sugarcane molasses, oil degradation yield in the sandy soil reached almost 90% after 60 days in the presence of the commercial biosurfactant, while it did not exceed 20% in the presence of only S. bombicola cells. These results promise to contribute to the development of green technologies for the treatment of hydrophobic pollutants with economic gains for the oil industries.File | Dimensione | Formato | |
---|---|---|---|
manuscript.v6 (3).pdf
accesso aperto
Descrizione: Articolo su rivista
Tipologia:
Documento in Pre-print
Dimensione
853.26 kB
Formato
Adobe PDF
|
853.26 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.