The Internet of Things (IoT) has created new and challenging opportunities for data analytics. The IoT represents an infinitive source of massive and heterogeneous data, whose real-time processing is an increasingly important issue. IoT applications usually consist of multiple technological layers connecting ‘things’ to a remote cloud core. These layers are generally grouped into two macro levels: the edge level (consisting of the devices at the boundary of the network near the devices that produce the data) and the core level (consisting of the remote cloud components of the application). The aim of this work is to propose an adaptive microservices architecture for IoT platforms which provides real-time stream processing functionalities that can seamlessly both at the edge-level and cloud-level. More in detail, we introduce the notion of µ-service, a stream processing unit that can be indifferently allocated on the edge and core level, and a Reference Architecture that provides all necessary services (namely Proxy, Adapter and Data Processing µ-services) for dealing with real-time stream processing in a very flexible way. Furthermore, in order to abstract away from the underlying stream processing engine and IoT layers (edge/cloud), we propose: (1) a service definition language consisting of a configuration language based on JSON objects (interoperability), (2) a rule-based query language with basic filter operations that can be compiled to most of the existing stream processing engines (portability), and (3) a combinator language to build pipelines of filter definitions (compositionality). Although our proposal has been designed to extend the Senseioty platform, a proprietary IoT platform developed by FlairBit, it could be adapted to every platform based on similar technologies. As a proof of concept, we provide details of a preliminary prototype based on the Java OSGi framework.

A Flexible IoT Stream Processing Architecture Based on Microservices

Giorgio Delzanno;
2020-01-01

Abstract

The Internet of Things (IoT) has created new and challenging opportunities for data analytics. The IoT represents an infinitive source of massive and heterogeneous data, whose real-time processing is an increasingly important issue. IoT applications usually consist of multiple technological layers connecting ‘things’ to a remote cloud core. These layers are generally grouped into two macro levels: the edge level (consisting of the devices at the boundary of the network near the devices that produce the data) and the core level (consisting of the remote cloud components of the application). The aim of this work is to propose an adaptive microservices architecture for IoT platforms which provides real-time stream processing functionalities that can seamlessly both at the edge-level and cloud-level. More in detail, we introduce the notion of µ-service, a stream processing unit that can be indifferently allocated on the edge and core level, and a Reference Architecture that provides all necessary services (namely Proxy, Adapter and Data Processing µ-services) for dealing with real-time stream processing in a very flexible way. Furthermore, in order to abstract away from the underlying stream processing engine and IoT layers (edge/cloud), we propose: (1) a service definition language consisting of a configuration language based on JSON objects (interoperability), (2) a rule-based query language with basic filter operations that can be compiled to most of the existing stream processing engines (portability), and (3) a combinator language to build pipelines of filter definitions (compositionality). Although our proposal has been designed to extend the Senseioty platform, a proprietary IoT platform developed by FlairBit, it could be adapted to every platform based on similar technologies. As a proof of concept, we provide details of a preliminary prototype based on the Java OSGi framework.
File in questo prodotto:
File Dimensione Formato  
MDPI_2020.pdf

accesso aperto

Descrizione: Articolo su rivista
Tipologia: Documento in Pre-print
Dimensione 581.1 kB
Formato Adobe PDF
581.1 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1043784
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 4
social impact