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Abstract: The Internet of Things (IoT) has created new and challenging opportunities for Data1

Analytics. IoT represents an infinitive source of massive and heterogeneous data, whose real-time2

processing is an increasingly important issue. Real-time Data Stream Processing is a natural answer for3

the majority of the goals of IoT platforms, but it has to deal with the highly variable and dynamic IoT4

environment. IoT applications usually consist of multiple technological layers connecting ‘things’ to a5

remote cloud core. These layers are generally grouped in two macro-levels: the edge-level (consisting6

of the devices at the boundary of the network near the devices that produce the data) and the core-level7

(consisting of the remote cloud components of the application). Real-time Data Stream Processing has8

to cope with a wide variety of technologies, devices and requirements that vary depending on the two9

IoT application levels. The aim of this work is to propose an adaptive microservices architecture for10

an IoT platform able to integrate real-time stream processing functionalities in a dynamic and flexible11

way, with the goal of covering the different real-time processing requirements that exist among the12

different levels of an IoT application. The proposal has been formulated for extending Senseioty, a13

proprietary IoT platform developed by FlairBit S.r.l., but it can easily be integrated in any other IoT14

platform. A preliminary prototype has been implemented as proof of concept of the feasibility and15

benefits of the proposed architecture.16

Keywords: Cloud Computing; Service Oriented Computing; Internet of Things; Real-time Stream17

Processing; Query Languages18

1. Introduction19

Nowadays, with the rise of IoT, we have at our disposal a wide variety of smart devices able to20

constantly produce large volumes of data at an unprecedented speed. Sensors, smartphones and any21

other sort of IoT devices are able to measure an incredible range of parameters, such as temperature,22

position, motion, health indicators an so forth. More and more frequently, the value of these data23

highly depends on the moment when they are processed and the value diminishes very fast with24

time: processing them shortly after they are produced becomes a crucial aspect. Indeed, the aim of25

Real-time Stream Processing is to query continuous data streams in order to extract insights and detect26

particular conditions as quickly as possible, allowing a timely reaction. Possible examples are the alert27

generation of a medical device or the real-time monitoring of a production line. In Stream Processing,28

data are no more considered as static and persistent data stored in a database, but as continuous and29

potentially unbounded sequences of data elements (i.e. data streams) from which static queries (a.k.a.30

rules) continuously extract information. The systems that execute this processing phase in a very short31

time span (milliseconds or seconds) are defined real-time stream processing engines. The IoT world32

offers an infinite set of use cases where real-time stream processing functionalities can be applied, but33

IoT applications provide at the same time a heterogeneous environment with respect to requirements,34
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devices and technologies. For these reasons, integrating real-time processing engines in IoT platforms35

becomes a challenging operation that requires special attention.36

An IoT platform provides tools, technologies and capabilities for simplifying the development,37

provisioning and management of IoT applications. Real-time stream processing engines are an38

increasingly popular and relevant technology, which the majority of the platforms are integrating39

in order to provide all the functionalities required by modern IoT applications. Indeed, Real-Time40

Stream Processing plays a crucial role in different and common IoT application scenarios, for instance:41

Anomaly and fraud detection; Remote monitoring; Predictive Maintenance; Real-time analytics42

(Sentiment analysis, Sports analytics, etc.). When integrating real-time stream processing engines in IoT43

platforms, the main difficulties arise from the high heterogeneity and dynamicity of the requirements44

and technologies of common IoT applications. At high level, a general IoT application consists of the45

following layers: The sensors/actuators layer, which includes the IoT devices; The edge layer, which46

includes all the devices near the sensors/actuators-level. These edge devices usually play the role of47

gateways, enabling the collection and the transmission of data; The core/cloud layer, which includes48

all the core functionalities and services of the application; The application/presentation layer, which49

includes all the client applications that have access to the core functionalities and services. Integrating50

real-time stream processing capabilities in IoT platforms imposes to face the following three main51

aspects:52

• Twofold level of applicability. It is required often to apply Real-Time Stream Processing at two53

different levels: at edge level and at core/cloud level. Both approaches offer different benefits54

but the great difference between the devices and resources at edge level and core level imposes55

also quite different requirements that affect the choice of the stream processing engines.56

• Technological pluralism. Due to the previous point, a natural consequence is to introduce57

different stream processing engines in the IoT platform because one stream processing technology58

rarely covers the edge level and the cloud level requirements. Having different stream processing59

engines means having different processing models and languages that must be handled for60

implementing stream processing rules.61

• Rules’ dynamicity. Usually, real-time IoT stream processing rules are based on a dynamic lifecycle.62

In the majority of IoT use cases, the functionalities implemented by real-time stream processing63

rules can be temporary functionalities (that are executed on demand and then removed after64

a while) or long-running functionalities never modified (e.g. a remote monitoring process).65

Moreover, it is often required to deploy rules directly on edge devices for reducing the response66

latency time or applying some pre-filtering operations, but when the workload increases, a67

scalable approach may be more preferable. For all these reasons, rules should have the possibility68

to be dynamically reallocated on different stream processing engines.69

Considering these aspects, the goal of this work is to propose an adaptive solution for integrating70

real-time stream processing functionalities into an IoT platform, Senseioty by Flairbit [21], able to71

satisfy the different requirements imposed by the edge level and the cloud/level. Moreover, the72

proposal offers a dynamic mechanism for facilitating the dynamic management and relocation of73

stream processing rules, hiding at the same time the complexity introduced by the presence of different74

and heterogeneous stream processing engines. The innovative aspect of our solution, with respect to75

common IoT platforms, consists in limiting the expressive power for defining stream processing rules76

to a predefined set of templates, in favor of a much more flexible and dynamic deployment model. The77

proposal architecture has been designed following a microservices architectural pattern. Microservices78

are a natural and widely adopted solution for implementing software platforms. The majority of79

IoT platforms are based on a microservices approach, even when it is not explicitly mentioned. This80

happens because the microservices architectural style is a chameleonic style, which can be implemented81

in different ways. Indeed, several technologies exist for implementing microservices, but for our82

purposes we have selected a particular technology able to guarantee a significant level of flexibility83

and dynamicity.84
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Plan of the paper85

In Section 2 we give an overview of the main features of the microservices architectural style and86

of a particular Java technology named OSGi, the main technology applied in Senseioty, the proprietary87

IoT platform developed by FlairBit. In Section 3 and 4 we present our proposal and a prototype88

implemented as a possible extension of Senseioty based on Siddhi and Apache Flink. In Section 5 we89

address some conclusions and future work.90

2. The Microservices Architectural Style and Java OSGi91

The microservices architectural style, see e.g. [25], is born to address the problems of the92

traditional monolithic approach. When you start to design and build a new application, the easiest93

and most natural approach is to imagine the application as unit composed by several components.94

The application is logically partitioned in modules and each one represents a functionality, however95

it is packaged and deployed as a unit. This monolithic approach is very simple and comes naturally.96

Indeed, all the IDE’s are necessarily designed to build a single application and the deployment of a97

single unit is easy and fast. Also scaling the application is trivial because it requires only running98

multiple instances of the single unit. This approach initially works and apparently quite well: the99

question is what happens when the application starts to grow. When the number of functionalities100

increases and the application becomes bigger and bigger, the monolithic approach shows its natural101

limit with respect to human capacities. In a short while, the dimensions of the application are such that102

a single developer is unable to fully understand it and this leads to serious problems. For example,103

implementing a new functionality becomes harder and time consuming and fixing bug even worse.104

The whole code is inevitably too complex; therefore adopting new frameworks and technologies is105

discouraged. In addition, the deployment and the start-up time are obviously negative affected by106

the huge size of the application. The main consequence is the slowdown of the entire development107

phase and any attempts of continuous integration and other agile practises fails. Moreover, all the108

components run in the same process or environment causing serious problems of reliability: a failure109

or a bug in a single component can compromise the entire application. In few words, the overall110

complexity of a huge monolith overwhelms the developers. The microservices architectural style111

was created specifically to address this kind of problems and to tackle the complexity. The book [24]112

describes a three-dimensional scale model known as scale-cube: Horizontal Scaling (running multiple113

instances behind a load-balancer); Functional Scaling (decomposing a monolithic application into a114

set of services, each one implementing a specific set of functionalities); Scaling of Data Partitioning115

(data are partitioned among the several instances and each copy of the application). These concepts116

are strongly connected to the idea of Single Responsibility Principle (SRP) [31]. The functionalities are117

exposed through an interface, often a REST API, and can be consumed by other services increasing118

the composability. The communication between microservices can be indifferently implemented by119

synchronous or asynchronous communication protocol and each microservice can be implemented120

with a different and ad-hoc technology. Moreover, each microservice has its own database rather121

than sharing a single database schema with other services. This makes a microservice an actual122

independently deployable and loosely coupled component. In this setting communication is provided123

via an API Gateway [28].124

The API Gateway is similar to the Facade pattern from object-oriented design: it is a software125

component able to hide and encapsulate the internal system details and architecture, providing a126

tailored API to the client. It is responsible for handling the client’s requests and consequently invoking127

different microservices using different communication protocol, finally aggregating the results.128

Microservices architectures often provide a service discovery mechanism typically implemented129

via a shared registry which is basically a database that contains the network locations of the associated130

service instances. Two important requirements for a service registry are to be highly available and up to131

date, thus it often consists in a cluster of servers that use a replication protocol to maintain consistency.132

One of the main principles at the heart of the microservices architecture is the decentralization of133
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Figure 1. Bundle life cycle.

data management: each microservice encapsulates its own database and data are accessible only134

by its API. This approach makes microservices loosely coupled, independently deployable and135

able to evolve independently from each other. In addition, each microservice can adopt different136

database technologies depending on its specific requirements, for example for some use cases a NoSQL137

database may be more appropriate than a traditional SQL database or vice versa. Therefore, the138

resulting architecture often uses a mixture of SQL and NoSQL databases, leading to the so-called139

polyglot persistence architecture. In this setting, data consistency is often achieved via an event-driven140

architecture [29]. A message broker is introduced into the system and each microservice publishes141

an event whenever a business entity is modified. Other microservices subscribe to these events,142

update their entities and may publish other events in their turn. The event-driven architecture is143

also a solution for the problem of queries that have to retrieve and aggregate data from multiple144

microservices. Indeed, some microservices can subscribe to event channels and maintain materialized145

views that pre-join data owned by multiple microservices. Each time a microservice publishes a new146

event, the view is updated. The last key aspect of the microservices architecture is how a microservices147

application is actually deployed. Three main different deployment patterns exist [30]: Multiple Service148

Instances per Host Pattern; Service Instance per Host Pattern sub-divided in (Service Instance per149

Virtual Machine Pattern/Container Pattern); Serverless Deployment Pattern (e.g. AWS Lambda;150

Google Cloud Functions; Azure Functions).151

Java OSGi OSGi [14] consists of a set of specifications established by the OSGi Alliance. The152

OSGi architecture [15] appears as a layered model. The bundles are the modules implemented by153

the developers. A bundle is basically a standard JAR file enriched by some metadata contained in154

a manifest [27]. The manifest and its metadata make possible to extend the standard Java access155

modifiers (public, private, protected, and package private). A bundle can explicitly declare on which156

external packages it depends and which contained packages are externally visible, meaning that the157

public classes inside a bundle JAR file are not necessarily externally accessible. The module, life cycle158

and services layer constitute the core of the OSGi framework: The module layer defines the concept of159

bundle and how a bundle can import and export code; The life cycle layer provides the API for the160

execution-time module management; The service layer provides a publish-find-bind model for plain161

old Java objects implementing services able to connect dynamically the bundles. Finally, the security162

layer is an optional layer, which provides the infrastructure to deploy and manage applications that163

must run in fine-grained controlled environments, and the execution environment defines the methods164

and classes that are available in a specific platform. A Bundle object logically represents a bundle into165
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OSGi framework and it defines the API to manage the bundle’s lifecycle. The BundleContext represents166

the execution context associated to the bundle. It basically offers some methods for the deployment and167

lifecycle management of a bundle and other methods for enabling the bundle interaction via services.168

It is interesting to notice that the BundleContext interface has methods to register BundleListener and169

FrameworkListener objects for receiving event notifications. These methods allow to monitor and to170

react to execution-time changes into the framework and to take advantage of the flexible dynamism171

of OSGi bundles. Finally, the BundleActivator offers a hook into the lifecycle layer and the ability to172

customize the code that must be executed when a bundle is started or stopped. The class implementing173

the BundleActivator inside a bundle is specified adding the Bundle-Activator header to the bundle174

manifest.175

As shown in Figure 1, firstly, a bundle must be installed into OSGi framework. Installing a bundle176

into the framework is a persistent operation that consists in providing a location of the bundle JAR177

file to be installed (typically a URL) and then saving a copy of the JAR file in a private area of the178

framework called bundle cache. Then, the transition from installed to resolved state is the transition179

that represents the automated dependency resolution. This transition can happen implicitly when180

the bundle is started or when another bundle tries to load a class from it, but it can also be explicitly181

triggered using specific methods of lifecycle APIs. A bundle can be started after being installed into182

the framework. The bundle is started through the Bundle interface and the operations executed during183

this phase (e.g. operations of initialization) are defined by an implementation of the BundleActivator.184

The transition from the starting to the active state is always implicit. A bundle is in the starting state185

while its BundleActivator’s start() method executes. If the execution of the start() method terminates186

successfully, the bundle’s state transitions to active, otherwise it transitions back to resolved. Similarly,187

an active bundle can be stopped and an installed bundle can be uninstalled. When uninstalling an188

active bundle, the framework automatically stops the bundle first. The bundle’s state goes to resolved189

and then to installed state before uninstalling the bundle.190

The OSGi environment is dynamic and flexible and it allows to update a bundle with a newer191

version even at execution-time. This kind of operation is quite simple for self-contained bundles192

but things get complicated when other bundles depend on the bundle being updated. The same193

problem exists when uninstalling a bundle, both the updating and uninstalling operations can cause194

a cascading disruption of all the other bundles depending on it. This happens because, in case of195

updating, dependent bundles have potentially loaded classes from the old version of the bundle,196

causing a mixture of loaded old classes and new ones. The same inconsistent situation occurs when a197

dependent bundle cannot load classes from a bundle that has been uninstalled. The solution for this198

scenario is to execute the updating and uninstalling operation as a two-step operation: the first step199

prepares the operation; the second one performs a refreshing. The refreshing allows to recalculate the200

dependencies of all the involved bundles, providing a control of the moment when the changeover201

to the new bundle version or removal of a bundle is triggered for updates and uninstalls. Therefore,202

each time an update is executed, in the first step the new version of the bundle is introduced and two203

versions of the bundle coexist at the same time. Similarly, for uninstalling operations, the bundle is204

removed from the installed list of bundles, but it is not removed from memory. In both cases, the205

dependent bundles continue to load classes from the older or removed bundle. Finally, a refreshing206

step is triggered and all the dependencies are computed and resolved again. In conclusion, the lifecycle207

layer provides powerful functionalities for handling, monitoring and reacting to the dynamic lifecycle208

of bundles. The next section presents the last but not the least layer of the OSGi framework: the service209

layer.210

Java OSGi and Microservices OSGi allows the combination of microservices and nanoservices.211

Leveraging the OSGi service layer, it is possible to implement microservices internally composed by212

tiny nanoservices. The final resulting architecture will be composed by a set of microservices, each213

one running on its own OSGi runtime and communicating remotely with the other microservices.214

Internally, a single microservice may be implemented as a combination of multiple nanoservices that215
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communicate locally as a simple method invocations. Secondly, OSGi offers an in-built dynamic216

nature. Developing microservices using OSGi means having a rich and robust set of functionalities217

specifically implemented for handling services with a dynamic lifecycle. Even more, it makes the218

microservices able to be aware of their dynamic lifecycle and react consequently to the dynamic219

changes. The OSGi runtime and its service layer were built upon this fluidity; therefore, the resulting220

microservices are intrinsically dynamicity-aware microservices. Last but not the list, OSGi makes221

the microservices architecture a more flexible architecture with respect to service decomposition.222

One drawback of microservices is the difficulty of performing changes or refactoring operations that223

span multiple microservices. When designing a microservices architecture, understanding exactly224

how all the functionalities should be decomposed into multiple small microservices is an extremely225

difficult task, which requires defining explicit boundaries between services and establishing once for226

all the communication protocols that will be adopted. If in future, the chosen service decomposition227

strategy turns to be no more the best choice or only a modification involving the movement of one228

or multiple functionalities among different microservices is required, performing this change may229

become extremely difficult because of the presence of already defined microservices boundaries and230

communication protocols. On the contrary, the OSGi Remote Services offers a flexible approach for231

defining the microservices boundaries. Indeed, a set of functionalities implemented by an OSGi service232

can be easily moved from a local runtime to a remote one without any impact on other services.233

Therefore, an already defined microservices decomposition strategy can be modified by reallocating234

the functionalities offered by services at any time. For example, one of two OSGi services previously235

designed for being on the same runtime (i.e. within the same microservice boundary) can be moved236

on another remote OSGi runtime without any difficult changes. The interaction between a distribution237

provider and a distribution consumer in OSGi takes place always as the two entities were on the238

same and local runtime: the distribution manager provided by the Remote Services specification239

transparently handles the remote communication. Moreover, this remote communication is completely240

independent from the communication protocols; therefore, any previous choice is not binding at all. In241

conclusion, OSGi enriches the microservices architecture with new and powerful dynamic properties242

and a flexible model able to support elastic and protocol-independent service boundaries. Moreover, it243

provides a level of service granularity highly variable allowing the combination of microservices and244

nanoservices. The only but very relevant drawback of OSGi with respect to microservices architectural245

pattern is the complete cancellation of technological freedom that characterizes microservices. OSGi246

is a technology exclusively designed for Java and implementing a microservices architecture based247

on OSGi necessary requires to adopt Java for developing the microservices. This does not mean248

that a microservice implemented using OSGi cannot be integrated with other services implemented249

with different technology; an OSGi remote service, for example, can be exposed externally also for250

not-OSGi service consumers, loosing however all the OSGi service layer benefits. It actually means251

that if Java and OSGi are not widely adopted for implementing the majority of the microservices of252

the architecture, the OSGi additional features lose their effectiveness. OSGi represents also a very253

powerful and dynamic service-oriented platform due to the several features offered by its service layer254

[17].255

Finally, the last relevant and powerful feature of the OSGi service layer is the flexibility offered256

by the Remote Services Specification [20]. The OSGi framework provides a local service registry for257

bundles to communicate through service objects, where a service is an object that one bundle registers258

and another bundle gets. However, the Remote Services Specification extends this behaviour in a very259

powerful and flexible manner, allowing the OSGi services to be exported remotely and independently260

from the communication protocols. The client-side distribution provider is able to discover remote261

endpoints and create proxies to these services, which it injects into the local OSGi service registry. The262

implementation of the discovery phase depends on the chosen distribution provider implementation263

(e.g. The Apache CXF Distributed OSGi [3] implementation provides discovery based on Apache264

Hadoop Zookeeper [9]). Another additional and powerful feature of OSGi Remote Services is the ability265
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to be independent from the underlying communication protocol adopted for the service exportation.266

A distribution provider may choose any number of ways to make the service available remotely. It can267

use various protocols (SOAP, REST, RMI, etc.), adopting a range of different security or authentication268

mechanisms and many different transport technologies (HTTP, JMS, P2P, etc.). The Remote Services269

specification offers a layer of indirection between the service provider and the distribution provider,270

leveraging the concepts of intents and configurations. They basically allow the service provider271

to specify just enough information to ensure that the service behaves as expected, then the task of272

the distribution provider is to optimize the communications for the environment in which they are273

deployed.274

3. A Microservices Architecture for Adaptive Real-time IoT Stream Processing275

Senseioty [21] is an IoT platform designed to accelerate the development of end-to-end solutions276

and verticals, revolving around the concept of insights-engineering, the seamless integration between277

data ingestion and distribution, data analytics and on-line data analysis. Senseioty is developed in278

Java as a set of highly cohesive OSGi microservices. Each Senseioty microservice can either be used279

together with Amazon AWS or Microsoft Azure managed services or deployed on private cloud or280

on-premises to accelerate and deliver full-fledged end-to-end IoT solutions for the customer. Senseioty281

features also an SDK to implement rapid verticalizations on top of its rich set of JSON RESTful APIs282

and analytics services. Senseioty automates the integration of IoT operational data with analytics283

workflows and provides a common programming model and semantics to ensure data quality, simplify284

data distribution and storage and enforce data access policies and data privacy. Senseioty is natively285

integrated with both Microsoft Azure IoT and Amazon AWS IoT and it can also operate on private and286

hybrid cloud to provide the maximum flexibility in terms of cloud deployment models Senseioty offers287

a wide variety of interesting and flexible functionalities that should give an idea of the flexibility and288

interoperability offered by a microservices architecture in the IoT context: Single-sign-on services for289

user and devices along with user management; Access policies microservice to protect resources and290

devices against unauthorized access and to guarantee data privacy; Flexible and unified programming291

interface to manage and provision connected devices.; Persistence of time series in Apache Cassandra292

clusters; Powerful and flexible way to communicate different microservices together and to implement293

remote services discovery based on the OSGi Remote Service specification; Senseioty microservices294

can be deployed at the three different layers of the hybrid-cloud stack (cloud layer, on-premises layer295

and edge layer); Deep-learning workflows based on neural networks and to push them on connected296

devices, in order to run analytics workflow on the edge. Senseioty integrates Apache Spark, a powerful297

Distributed Data Stream Processors engine to analyse data stream in real-time and provide on-line data298

analytics on the cloud, leveraging both neural network and statistical learning techniques to analyse299

data. Finally, Senseioty provides a rich set of IoT connectors to integrate standard and custom IoT300

protocols and devices.301

FlairBit extensively adopts in its platform Apache Karaf [6], a powerful and enterprise ready302

applications runtime built on top two famous OSGi implementation (Apache Felix and Eclipse Equinox)303

that offers some additional and useful functionalities, such as the concept of feature.304

One problem exposed by FlairBit, which is usually a problem common to the majority of IoT305

platform, is to have two different levels of data stream processing: The edge level; The core/cloud level.306

The two levels offer different benefits but impose quite different requirements. The term “edge” in IoT307

platforms generally means the location at the boundary of the network near the devices that produce308

the data. Edge devices are usually quite simple devices that play the role of gateways, enabling309

the collection and the transmission of data. However, modern edge devices can also offer enough310

computational resources to enable more complex functionalities, such as pre-processing, monitoring or311

pre-filtering. Moving the stream processing elaboration directly on the edge of the IoT platform takes312

the name of Edge analytics and the consequent benefits are quite notable: Lowest possible latency,313

having a stream processing unit deployed directly on an edge devices makes possible to respond314
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quickly to events produced locally, avoiding to send data to the remote cloud/core of the platform over315

the network; Improved reliability, moving the stream processing rules on the edge allows the edge316

devices to operate even when they lose the connection with the core platform; Reduced operational317

costs, pre-processing and pre-filtering data directly on the edge makes possible to save bandwidth,318

cloud storage and computational resources consequently lowering operational costs.319

On the other hand, edge analytics imposes some stringent requirements in term of computational320

power. The modern edge devices are becoming more and more powerful, but the computational321

resources offered by this kind of devices are limited. Therefore, the technologies installed on the edge322

must be lightweight and it is likely that they are quite different technologies from those applied on the323

core platform. Indeed, the stream processing units on the edge usually deals with simple filtering rules324

and streams of data restricted to the local sensors or devices, without the need of scaling the stream325

processing job across multiple machines.326

On the core platform, the context is completely different. In this scenario, the stream processing327

engines must be able to deal with different workloads and the computational resources abound. They328

must be able to scale the computation across a cluster of machines in order to handle large volume of329

data and more intensive tasks, for example joining and aggregating different events from different330

streams of data. Therefore, the need of scaling capabilities overcomes the limit of the computational331

resources. The main goals of the proposed extension of the Senseioty architecture are as follows: 1)332

Providing adaptivity, meaning that the stream processing units can be indifferently allocated on the333

edge or on the core and moved around. This makes possible to cover the two different levels of data334

stream processing, the edge level and the core/cloud level, and exploiting all their different benefits. 2)335

Providing flexibility, allowing a punctual and on-demand deployment of the stream processing units.336

The user or the client application/service defines when and where allocating, starting, stopping and337

deallocating the stream processing rules. 3) Providing a set of portable and composable rules that can338

be defined in a standard way and then automatically deployed on different stream processing engines339

without depending on their own languages and models. The rules can be combined together, in order340

to apply a sort of stream processing pipeline. The rules are not only dynamically manageable, but341

composable and engine-independent. The reference structure of the resulting architecture is shown in

Figure 2. Reference Architecture
342

Fig. 2. There are two main components in our architecture:343

• The proxy µ-service: the entry point of the architecture, offering a RESTful API for installing,344

uninstalling, starting, stopping and moving stream processing rules on demand.345
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• The adapter µ-service. It is responsible for physically executing the functionalities offered by the346

proxy µ-service, interacting with the different stream processing engines available on the edge347

and on the core of the architecture.348

The proxy µ-service represents the entry point of the architecture. It offers a RESTful JSON interface,349

a standard choice in microservices architecture (and it is usually adopted in Senseioty) in order to350

offer a solution as much compatible and reusable as possible. The REST API offers the following351

functionalities:352

URL Method Request Body Response Body
/api/install POST JSON installation object JSON jobinfo object
/api/uninstall POST JSON jobinfo object JSON jobinfo object
/api/start POST JSON jobinfo object JSON jobinfo object
/api/stop POST JSON jobinfo object JSON jobinfo object
/api/move POST JSON relocation object JSON jobinfo object

353

The method install installs the rule on the required resource and engine defined by the json installation354

object. The method uninstall uninstalls the rule identified by the jobinfo request object. The method355

start runs the rule identified by the jobinfo request object. The method stop stops the execution of356

the rule identified by the jobinfo request object. The method move moves the rule identified by the357

jobinfo request object to the target runtime defined by the relocation object. Interaction with the proxy358

µ-service is carried out through the JSON objects of the following form:359

// JSON INSTALLATION OBJECT360

{361

"headers":{362

"runtime":<ENGINE>,363

"targetResource":<URL>,364

"jobType":<JOB_TYPE>365

},366

"jobConfig":{367

"connectors":{368

"inputEndpoint":<STRING>,369

"outputEndpoint":<STRING>370

},371

"jobProps":{372

"condition":< ">" | ">=" | "=" | "<" | "<=" >,373

"threshold":< INT | FLOAT | DOUBLE | STRING >,374

"fieldName":<STRING>,375

"fieldJsonPath":<JSON_PATH>376

}377

}378

}379

// JSON JOBINFO OBJECT380

{381

"runtime":<ENGINE>,382

"jobId":<STRING>,383

"jobType":<JOB_TYPE>,384

"jobStatus":<INSTALLED|RUNNING|STOPPED|UNINSTALLED>,385

"configFileName":<STRING>386

}387

// JSON RELOCATION OBJECT388

{389

"target_runtime":<ENGINE>,390
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"targetResource":<URL>,391

"jobInfo":<JSON_JOBINFO_OBJECT>392

}393

The JSON installation object is the object that the client must provide to the proxy in order to describe394

the stream processing rule to be allocated. The headers field indicates the runtime engine that will395

execute the rule (the <ENGINE> value depends on the engines supported by the implementation), the396

target resource which is the machine on which allocating the rule (the value can be an URL or a simple397

ID, depending on the architecture implementation) and the job type, which indicates the kind of rule398

that the jobProps field contains. The implementation of the architecture supports a set of predefined399

rule templates identified by a unique name that must be inserted in the jobType field (e.g. single-filter,400

sum-aggregation, avg-aggregation, single-join etc.). Ideally, we would like to have a solution able to401

support any kind of rule expressible with a standard query stream language (e.g. the Stanford CQL402

[23]), but in practice this is not achievable because each stream processing engine has its own model403

and language with its own level of expressiveness. Therefore, it is extremely complicated to implement404

a compiler able to validate an arbitrary query and to compile and translate it to the model or language405

of the underlying stream processing engine. Considering this scenario, we provide an architecture406

able to support a set of predefined rule templates. A possible subset that should be compatible with407

the majority of stream processing engines includes (using a SQL like syntax):408

• Filtering query (e.g. SELECT * FROM inputEvents WHERE field > threshold)409

• Aggregation query over a window (e.g. SELECT SUM(field) FROM inputEvents[5 s])410

• Joining query between two streams over windows (e.g. SELECT field1 field2 FROM stream1[1m]411

JOIN stream2[1m] ON stream1.field3 = stream2.field)412

This is of course only a possible subset, which must be verified and extended considering the engines413

selected for the implementation.414

The connectors field specifies the information needed for reading and writing the events consumed415

by the rule from/to a pub-sub broker. Again, the format of these fields depends on the pub-sub broker416

adopted in the implementation, but it in general the required parameters are a simple URL or a queue417

or topic name. It is important to notice that the presence of two pub-sub brokers (one on the edge418

and one on the core) makes possible to combine and compose the rules in order to obtain stream419

processing pipelines. The jobProps field contains the parameters needed for allocating the stream420

processing rules. The format of this field depends on the rule template specified in the jobType field.421

The JSON jobInfo object is the object that contains all the necessary information that must be provided422

in order to perform all the other operations (starting, stopping, uninstalling or moving the rule) and it423

is created by the adapter µ-service and returned to the client by the proxy µ-service. It contains some424

information specified by the JSON installation object, with the addition of a jobId (a unique identifier425

for the installed rule instance), a jobStatus (it indicates the current execution status of the rule) and a426

configFileName (the name of the configuration file that represents the materialization of the jobConfigs427

field specified in the JSON installation object). The role of the configuration file will be clarified shortly428

when describing the adapter µ-service. The JSON relocation object is the object required for moving a429

rule from the current runtime to a target runtime. It contains the jobinfo object describing the selected430

rule and information regarding the target runtime (the engine and the resource URL or ID identifying431

the target machine).432

The adapter µ-service is responsible for actually executing the functionalities offered by the proxy433

µ-service. It offers the following procedures: A procedure for installing a new rule; A procedure for434

starting/stopping/uninstalling an existing rule; A procedure for moving an existing rule from its435

current runtime to another one. During the installation procedure, the adapter µ-service translates the436

information received from the proxy µ-service into executable rules via a sort of parametrization as437

shown below: The adapter µ-service has access to a repository from where it can download the rule438

template corresponding to the jobType and runtime fields expressed in the JSON installation. The439
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rule template is any sort of predefined executable file (for our purposes will be a JAR archive) that440

can be modified injecting a configuration file containing the rule parameters specified by the JSON441

installation object. Therefore, in case of rule installation, the adapter µ-service downloads the relative442

rule template, creates and injects the configuration file and then install the rule on the target runtime.443

If the target runtime is a distributed stream processing engine, the executable template is actually444

an executable job that is submitted to the cluster manger. If the target runtime is a lightweight and445

non-distributed stream processing engine for the edge, the rule template is actually an independent446

µ-service that is installed on the target machine on the edge. Finally, the adapter µ-service creates447

the JSON jobinfo object with the necessary information that will be returned to the client. In case of448

starting, stopping and uninstalling operations, the adapter µ-service acts always depending on the449

runtime engine associated to the rule, as shown below.450

In case of distributed stream processing engine, it communicates with the cluster manager for451

executing the required operation. On the other hand, in case of lightweight stream processing µ-service452

on the edge, the implementation must provide a mechanism to interact dynamically with target453

runtime. It is intuitive to understand that a technology like OSGi and its bundle lifecycle naturally454

fits this scenario. OSGi is the main technology adopted in the prototype that will be described in455

the next section, but this architecture description section is intentionally lacking of technical and456

implementation details in order to be as much general as possible. The idea is to offer a guideline457

proposal that must be refined with respect to technologies selected for the implantation, which may be458

completely different from those selected for our prototype. Indeed, one benefits of a microservices459

architecture is the technological freedom.460

Finally, for moving an existing rule across different runtimes the adapter µ-service acts as follows.461

First, it checks if the rule to be moved is running and eventually it stops its execution. Secondly, it462

uninstalls the current rule, it downloads the new template for the new target runtime and it injects463

the previous configuration file. Finally, it installs the new rule on the new target runtime, starting the464

execution of the new rule if it was previously running. In our architecture we introduce two pub/sub465

brokers. Having two event dispatcher systems in the architecture, one for edge level and another one466

for the cloud/core level, makes possible to implement composable stream processing rules. Indeed, the467

connectors field in the JSON installation object allows to specify the queue or topic names from where468

reading events and where writing the output events. This means that any rule can be concatenated469

with other rules in order to implement a stream processing pipeline. For example, two filtering rules470

can be combined on the same edge-device leveraging the edge pub/sub broker in order to create a471

two-step filter. Moreover, a pre-filtering rule on the edge can be applied on top of an aggregation rule472

executed at cloud/core level in order to reduce the amount of data sent over the network.473

The last aspect to consider is the client application layer. As already explained, the proxy474

µ-service offers a simple RESTful JSON API accessible from any kind of client. For this reason, the475

functionalities offered by the API can be employed by other µ-services in the context of a larger476

platform (e.g. Senseioty) and combined with other additional functionalities (e.g. the authentication477

and authorization µ-services offered by Senseioty). Moreover, it is possible to provide a web interface478

that lets a user to interact directly with the proxy µ-service, defining and managing the rules. The479

API offers all the functionalities needed for implementing an adaptive monitoring rule relocation480

procedure. The only prerequisites are: Having access to a stream of events logging statistics about481

the performance and workload of the edge-devices; Having the possibility to store and update the482

information mapping the rules (i.e. the JSON jobInfo objects) to the IDs of the edge devices that are483

executing the rules.484

4. Prototype Implementation485

In order to implement a prototype of the proposed architecture we considered a lightweight stream486

processing engine for edge analytics called Siddhi [22]. Siddhi is an effecting streaming processing487

engine that provides an SQL-like stream language with a rich expressive power. It allows any sort of488
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Figure 3. Prototype Structure

stateful and stateless operation, timing and counting windows, aggregation and join functions. It also489

supports different event formats (JSON, XML, etc.) for specifying event patterns for complex event490

processing (CEP). It provides a rich set of external event source integration, such as Kafka, MQTT,491

RabbitMQ and other brokers and provides a lightweight runtime compatible, e.g., with Android492

devices. The Siddhi libraries were transformed and wrapped into well-defined OSGi bundles. The493

Senseioty SDK provides some Java project templates explicitly configured for applying OSGi specific494

tools (e.g. Bnd tools [10]) able to create a JAR with OSGi meta data (i.e. a bundle) based on instructions495

and the information in the class files. A feature for the Karaf runtime, collecting all the bundles496

needed by Siddhi as dependencies, was created. The Senseioty SDK offers some functionalities able to497

discover all the dependencies and transitive dependencies required by a bundle and then to materialize498

them in the form of a Karaf feature. Therefore, the provisioning phase of a Siddhi application on a499

Karaf runtime (by provisioning application, it means install all modules, configuration, and transitive500

applications) requires now only a simple and automatic feature installation. Although this step501

required a lot of technical passages, a detailed description is beyond the scope of the paper. Once502

obtained a fully OSGi-compliant stream processing engine for edge analytics purposes, the second503

step consisted in exploring and selecting another engine able to scale across a cluster of machines for504

core/cloud analytics purposes. During this phase, an analysis and some implementation of spike505

test programs were performed for the following stream processing technologies: Ignite [5]; Samza [7];506

Flink [4]; Storm [8]; Streams [11]. Apache Flink turned out to be the most flexible available solution.507

It has a rich and complete API that follows a declarative model very similar to the Spark Streaming508

one and it has also a powerful additional library for complex event processing for specifying patterns509

of events. Moreover, it has a rich set of out-of-the-box external source connectors, a flexible resource510

allocation model based on slots independent from the number of CPU cores, and it is very easy to511

deploy a Flink cluster on Kubernetes. Based on all the above considerations, the structure of the512

implemented prototype is shown in Fig. 3. The proxy and the adapter µ-services are implemented513

as OSGi-bundles deployed on a Karaf runtime. The proxy µ-service offers a RESTful JSON API with514

the following functionalities. First, it provides an installation functionality for installing a filtering515

rule for events in JSON format. The rule can be indifferently instantiated as an independent Siddhi516

µ-service (implemented in the form of an OSGi bundle) or deployed as a distributed job on a Flink517

cluster. It also provides a starting, stopping and uninstalling functionalities for removing or handling518
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the rule execution, and a moving functionality for relocating a rule from a Siddhi runtime to a Flink519

runtime or vice versa. The RESTful API was implemented using Apache CXF [2], an open-source and520

fully featured Web services framework. In this preliminary implementation, the runtime supported521

are Siddhi and Apache Flink and only one rule type is available: a threshold filter for events in JSON522

format. The client can specify a filtering rule defining the following jobProps in the JSON installation523

object:524

// JSON INSTALLATION OBJECT525

526

{ ...527

"jobProps":{528

"condition":< ">" | ">=" | "=" | "<" | "<=" >,529

"threshold":< INT | FLOAT | DOUBLE | STRING >,530

"fieldName":<STRING>,531

"fieldJsonPath":<JSON_PATH>532

}533

}534

}535

The prototype supports one rule type: a threshold filter for events in JSON format. The parameters536

specified by this rule type will be injected into two different rule templates that are implemented537

using the model and libraries provided by Siddhi and Flink. In practice, the rule parameters can be538

instantiated in two different rule templates:539

// PROTOTYPE INSTALLATION ADAPTER SERVICE PROCEDURE540

private bundleContext;541

542

Install_rule (JsonInstallationObj req) {543

// Get and configure the right template544

mavenUrl = get_template_maven_url (req.headers.runtime, req.headers.jobType)545

ruleTemplate = download_from_maven_repo(mavenUrl)546

configurationFile = create_config_file(req.headers, req.jobConfig)547

configFileName = save(configurationFile)548

deployableRule = inject_config_file(ruleTemplate, configurationFile)549

550

// Install the rule as an independent Siddhi service551

if (req.headers.runtime == SIDDHI)552

job_id = install_OSGi_bundle ( bundleContext, deployableRule)553

554

// Submit the rule to the remote Flink Cluster555

if (req.headers.runtime == FLINK)556

job_id = submit_to_cluster_manager (deployableRule)557

558

jobInfo = new JobInfo(runtime, jobId, jobType,559

status.INSTALLED, configurationFileName )560

return jobInfo561

}562

563

In the form of an OSGi bundle (i.e. a µ-service ) encapsulating a Siddhi runtime executing the filtering564

rule; In the form of a Flink job, which can be submitted to a Flink cluster. In this preliminary version of565

the prototype, the Siddhi bundles are installed and executed on the same OSGi runtime of the proxy566



Version October 20, 2020 submitted to Journal Not Specified 14 of 17

and adapter µ-service. The remote installation on an edge-device can be easily integrated in future.567

Instead, the Flink runtime is installed on a remote Kubernetes cluster on the Amazon EKS service.568

The two rule templates previously cited are implemented in the form of a JAR file. Both templates569

are stored as Maven artifact into a Maven repository. Maven [11] is a tool used for building and570

managing any Java-based project and a Maven repository is basically a local or remote directory where571

Maven artifacts are stored. A Maven artifact is something that is either produced or used by a project572

(e.g. JARs, source, binary distributions, WARs etc.). In this case, both templates are implemented as573

JAR files. In order to download a Maven archetype from a Maven repository, an OSGi bundle (i.e.574

the adapter µ-service) needs only to specify a Maven URL identifying the artifact. Then the URL575

resolution and the JAR download is handled by Pax URL [12], a set of URL handlers targeting the576

OSGi URL Handler Service. This mechanism is applied by the adapter µ-service for downloading577

the rule template for installing the rule on the required stream processing engine. The template to be578

download (and its relative Maven URL) depends on the jobType and runtime fields specified in the579

JSON installation object. Therefore, the adapter µ-service must have some predefined information580

that bind a Maven URL to a specific jobType and runtime. In this preliminary implementation, the581

above mentioned information are stored in memory into a simple hashTable, but for real purposes a582

simple database is required. The adapter µ-service provides the implementation of the procedures583

for installing, starting, stopping, uninstalling and moving the rules and it is responsible for injecting584

the rule parameters into the two different templates previously cited. When the adapter µ-service has585

to install a new rule, considering the jobType (in this case there is only one jobType: a filter) and the586

runtime (Siddhi or Flink) specified by the JSON installation object, it downloads the corresponding587

JAR file template from the Maven repository. Once obtained, the adapter µ-service translates the588

jobProps in a configuration file that is injected into the JAR template file. At this point, depending589

on the runtime chosen, the template rule is installed in two different ways. In case of a Flink job, the590

JAR template is sent to the Flink cluster manager using a REST API offered directly by Flink. On the591

other hand, in case of an OSGi bundle implementing the Siddhi filtering application, the bundle is592

installed on the Karaf runtime using the OSGi methods offered by the lifecycle layer. In this preliminary593

prototype, for the sake of simplicity, the OSGi bundle is installed on the same runtime of the proxy594

and adapter µ-service, but actually it should be installed on a remote runtime (i.e. a gateway device)595

on the edge of the IoT platform. Once the required rule is correctly installed on the target runtime, the596

adapter µ-service creates a JSON jobInfo object collecting all the relevant information about the just597

installed rule. In particular, it keeps trace of a jobId (corresponding to a bundle id for a Siddhi rule598

and to a jobId for Flink rule) and a configFileName (corresponding to a unique name of the generated599

configuration file, useful for reusing the file when moving the rule for one runtime to another). For600

all the other operations (starting, stopping, uninstalling and moving), the adapter µ-service uses the601

information provided by the jobInfo object and the methods offered by the OSGi lifecycle layer or the602

Flink REST API. The Siddhi OSGi bundles are installed on the same runtime of the proxy and adapter603

µ-service, but actually they should be installed on a remote runtime (i.e. a gateway device) on the604

edge of the IoT platform. This behaviour has been successfully implemented in Senseioty by FlairBit,605

which has extended the OSGi functionalities for communicating with remote runtime and it can be606

easily integrated in this prototype implementation in future. In practice, a remote OSGi runtime is607

connected to the core platform through two communication channels. A bidirectional channel used for608

communicating configurations options and statements. In this scenario, the adapter µ-service would609

use this channel to notify the target runtime about downloading the required bundle rule: it requires610

only a symbolic ID or URL to identify the target runtime. Possible communication protocols adopted611

for this channel are MQTT or TCP. A one-directional channel used by the remote OSGi runtime for612

download a remote resource, in this case the bundle rule notified by the adapter µ-service. A possible613

example of communication protocol adopted for this channel is FTP. This communication mechanism614

can be used by the adapter µ-service for executing all the required interactions with a remote OSGi615

runtime (installing, starting, stopping and uninstalling a Siddhi bundle). Another relevant feature616
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implemented by this prototype is the rule composability, meaning that multiple filtering rules can617

be concatenated in order to obtain a multiple-step filtering pipeline. Indeed, the currently supported618

filtering rules are easily composable because they read and write events from a RabbitMQ broker.619

RabbitMQ [19] is an open source message broker supporting multiple messaging protocols and it620

was chosen for this prototype implementation because both Siddhi and Flink provide out-of-the box621

connectors for consuming and writing event from a RabbitMQ broker. More specifically, RabbitMQ is622

adopted in this prototype for handling streams of events in JSON format using the AMQP protocol [1].623

The role of an AMQP messaging broker is to receive events from a publisher (event producer) and624

to route them to a consumer (an application that processes the event). The AMQP messaging broker625

model relies on two main components:626

• Exchanges, which are components of the broker responsible for distributing message copies to627

queues using rules called bindings. There are different exchange types, depending on the binding628

rules that they apply. This prototype uses only exchanges of type direct, which delivers messages629

to queues based on a message routing key included when publishing an event.630

• Queues, which are the component that collect the messages coming from exchanges. A consumer631

reads the events from a queue in order to process the messages.632

Therefore, when specifying the jobConfigs field in the JSON installation object, a client must provide in633

the connectors field the information needed for reading and writing events from/to an AMPQ queue.634

More specifically, is necessary to specify the parameters in the connectors field: For specifying the635

input source for the event, the following information are needed:636

• inputEndPoint: the URL for connecting to the RabbitMQ broker (it might be different from637

outputEndPoint).638

• inputExchange: the name of the exchange from which the input queue will read the messages. If639

the exchange does not already exist, it is created automatically.640

• inputQueue: the name of the queue that will be bind to the inputExchange. If the queue does not641

already exist, it is created automatically.642

• inputRoutingKey: the routing key that is used for binding the inputExchange to the InputQueue.643

On the other hand, for specifying the output source of events, these information are required:644

• outputEndPoint: the URL for connecting to the RabbitMQ broker.645

• outputExchange: the name of the exchange where to publishing the events. If the exchange does646

not already exist, it is created automatically.647

• outputRoutingKey: the routing key that is included to the event when publishing it.648

Leveraging these features, the prototype allows to create stream processing pipelines of arbitrary649

complex. For example, multiple Siddhi filters can be concatenated with other filters executed on650

Flink. In practice, there is the need of two message brokers: one for the edge level and one for the651

cloud/core level. This aspect makes possible to concatenate multiple edge rules without the need652

of sending events to a remote broker in the core of the platform, avoiding to introduce unnecessary653

latency. RabbitMQ may be a reasonable choice for the cloud/core level scenario, but for the edge level,654

the choice must be carefully evaluated for not overloading the edge/gateway devices. For FlairBit and655

Senseioty purposes, considering that the edge/gateway devices are provided with an OSGi runtime, it656

may be a reasonable choice to take advantage of the OSGi Event Admin Service [16]: an inter-bundle657

communication mechanism based on an event publish and subscribe model. This sort of OSGi message658

broker can be easily paired with the Remote Service functionalities in order to connect multiple OSGi659

runtimes. This solution makes possible to obtain a message broker at edge level, without the need of660

adding an external and additional technology. The drawback is that we have to develop a customized661

connector implementation for each stream processing engine, in order to consume events from the662

OSGi broker663
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5. Related Work and Conclusions664

In this paper we have proposed an adaptive solution for satisfying the dynamic and heterogeneous665

requirements that IoT platforms are inevitably facing. During the research and development path that666

led to our proposal, we investigated all the features of the microservices architectural pattern, with the667

aim of deeply understanding the level of flexibility and dynamicity that this approach is able to offer.668

OSGi turned out to be the perfect booster for those dynamic and flexible features that we were looking669

for. Then, on the basis of the industrial experience of FlairBit, we formulated a proposal architecture670

accompanied by a preliminary prototype implementation. Our solution meets the need to introduce671

different real-time stream processing technologies in IoT platforms, in order to offer streaming analytic672

functionalities on the different architectural levels of IoT applications. The innovative aspect resides in673

a limitation of the expressiveness power for defining stream processing rules, in favour of a much more674

flexible and dynamic deployment model. Streaming rules are restricted to a predefined and manageable675

set of templates, which allows to handle rules as resources dynamically allocable, composable and676

engine independent. These resources can be indifferently deployed at edge-level or core-level and677

moved around at any time.678

Comparing our proposal with similar real-time streaming functionalities offered by the IoT679

platforms of Amazon, Azure and Google, the dynamic features of our solution can be potentially680

promising and innovative. Amazon offers AWS IoT Greengrass [16] as a solution for moving analytical681

functionalities directly on edge devices. It is basically a software that once installed on an edge682

device enables the device to run AWS Lambda functions locally. AWS Lambda enables to run code683

without provisioning or managing servers. They offer a great level of expressivity with respect to684

our proposal because they support function implemented with all the most common programming685

languages. However, AWS IoT Greengrass does not provide any functionality for dynamically moving686

the Lambda computation back and forth between the edge-level and cloud-level and it is bound687

to the Lambda execution model. It does not offer any integration with external stream processing688

engines, which on the other hand can be integrated in our solution as pluggable components as long689

as template implementations of the supported rule types are provided. Microsoft Azure offers similar690

functionalities with Azure Stream Analytics on IoT Edge [13]. It empowers developers to deploy691

near-real-time analytical intelligence, developed using Azure Stream Analytics, to IoT devices. The692

principle is the same of AWS IoT Greengrass: installing the Azure IoT Edge software we enable the693

edge devices to locally execute Azure Stream Analytics rules. Azure Stream Analytics is a real-time694

analytics and complex event-processing engine where streaming rules and jobs are defined using a695

simple SQL-based query language. Again, the power of expressiveness is much wider with respect to696

our proposal, but the resulting solution is inevitably bound to the only Azure Stream Analytics engine697

and no mechanisms for the dynamic relocation of rules between edge and cloud are provided. Finally,698

Google Cloud IoT [18] integrates the Apache Beam SDK [21], which provides a rich set of windowing699

and session analysis primitives. It offers a unified development model for defining and executing700

data processing pipelines across different stream processing engines, including Apache Flink, Apache701

Samza, Apache Spark and other engines. However, Apache Beam supports only scalable engines702

suitable for the core-cloud level and it is not designed for supporting edge analytics.703

Concerning future research directions, one possibility is to improve the architecture by704

investigating possible solutions for simplifying the rules’ definition. Our API requires to define705

a JSON object containing the rules’ parameters, but for example a web interface or an SDK similar706

to Apache Beam may offer a higher level approach. In this case, it is required to identify the right707

trade-off between the level of expressiveness offered by a possible unified model or language and708

the limits imposed by the presence of predefined rule types and templates. Another interesting point709

consists in integrating a monitoring µ-service in the application. This monitoring functionality, which710

is presented as possible application scenario of our proposal, can be formalized in more details in order711

to become an integral part of our solution. Providing an out-of-the-box monitoring behaviour can be a712

powerful additional feature useful in many IoT use cases.713
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