Humans can acquire information on others' motor outputs (action prediction) and intentions (action understanding) according to their individual motor repertoire and to the detected gesture's features (e.g. temporal patterns). We aimed at dissociating between action prediction and action understanding abilities in soccer players and novices observing soccer action videos including correct timing pass (CTP) or delayed pass (DP). First, we used an occluding paradigm to evaluate participants' ability to predict the correct time to pass the ball. Although soccer players showed reduced reaction times, all subjects showed a similar pattern of performance: during DP observation, responses appeared delayed with respect to the other conditions but anticipated with respect to the observed DP. In a separate experiment, we investigated the ability to recognize CTP vs DP and the modulation of primary motor cortex (M1) excitability associated to video observation. Only soccer players showed selective modulation of M1 according to the plausibility of the observed action, with increased excitability during the observation of the CTP and in a phase preceding the DP. In conclusion, action prediction ability seems to be independent from the individual motor repertoire. By contrast, only subjects with previously acquired sensorimotor skills are able to infer the observed action's long-term intention.
The last chance to pass the ball: Investigating the role of temporal expectation and motor resonance in processing temporal errors in motor actions
Gervasoni E.;Bisio A.;Biggio M.;Ruggeri P.;Avanzino L.;Bove M.
2020-01-01
Abstract
Humans can acquire information on others' motor outputs (action prediction) and intentions (action understanding) according to their individual motor repertoire and to the detected gesture's features (e.g. temporal patterns). We aimed at dissociating between action prediction and action understanding abilities in soccer players and novices observing soccer action videos including correct timing pass (CTP) or delayed pass (DP). First, we used an occluding paradigm to evaluate participants' ability to predict the correct time to pass the ball. Although soccer players showed reduced reaction times, all subjects showed a similar pattern of performance: during DP observation, responses appeared delayed with respect to the other conditions but anticipated with respect to the observed DP. In a separate experiment, we investigated the ability to recognize CTP vs DP and the modulation of primary motor cortex (M1) excitability associated to video observation. Only soccer players showed selective modulation of M1 according to the plausibility of the observed action, with increased excitability during the observation of the CTP and in a phase preceding the DP. In conclusion, action prediction ability seems to be independent from the individual motor repertoire. By contrast, only subjects with previously acquired sensorimotor skills are able to infer the observed action's long-term intention.File | Dimensione | Formato | |
---|---|---|---|
Pedulla2020_SCAN.pdf
accesso aperto
Tipologia:
Documento in versione editoriale
Dimensione
746.81 kB
Formato
Adobe PDF
|
746.81 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.