This paper relates with the assignment of trucks to time slots in container terminals equipped with Truck Appointment Systems. A two-phase approach is provided: first, export and import containers are matched in tuples with a clustering analysis to reduce the number of empty trips and, then, tuples are assigned to time slots to minimize trucks deviation from their preferred time slots and truck turnaround times. Real case instances related to Mexican and Italian container terminals are tested. Results show that our approach reduces empty-truck trips up to 33.79% and that it can be successfully applied to any container terminal.
A combined data mining – optimization approach to manage trucks operations in container terminals with the use of a TAS: Application to an Italian and a Mexican port
Sacone S.
2020-01-01
Abstract
This paper relates with the assignment of trucks to time slots in container terminals equipped with Truck Appointment Systems. A two-phase approach is provided: first, export and import containers are matched in tuples with a clustering analysis to reduce the number of empty trips and, then, tuples are assigned to time slots to minimize trucks deviation from their preferred time slots and truck turnaround times. Real case instances related to Mexican and Italian container terminals are tested. Results show that our approach reduces empty-truck trips up to 33.79% and that it can be successfully applied to any container terminal.File | Dimensione | Formato | |
---|---|---|---|
Sacone-riv2.pdf
accesso chiuso
Descrizione: Articolo su rivista
Tipologia:
Documento in versione editoriale
Dimensione
8.77 MB
Formato
Adobe PDF
|
8.77 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.