We provide a quick proof of the following known result: the Sobolev space associated with the Euclidean space, endowed with the Euclidean distance and an arbitrary Radon measure, is Hilbert. Our new approach relies upon the properties of the Alberti–Marchese decomposability bundle. As a consequence of our arguments, we also prove that if the Sobolev norm is closable on compactly-supported smooth functions, then the reference measure is absolutely continuous with respect to the Lebesgue measure.

A short proof of the infinitesimal Hilbertianity of the weighted Euclidean space

Di Marino S.;
2020-01-01

Abstract

We provide a quick proof of the following known result: the Sobolev space associated with the Euclidean space, endowed with the Euclidean distance and an arbitrary Radon measure, is Hilbert. Our new approach relies upon the properties of the Alberti–Marchese decomposability bundle. As a consequence of our arguments, we also prove that if the Sobolev norm is closable on compactly-supported smooth functions, then the reference measure is absolutely continuous with respect to the Lebesgue measure.
File in questo prodotto:
File Dimensione Formato  
Inf_Hilb_wRn_REV.pdf

accesso aperto

Tipologia: Documento in Pre-print
Dimensione 315.41 kB
Formato Adobe PDF
315.41 kB Adobe PDF Visualizza/Apri
CRMATH_2020__358_7_817_0.pdf

accesso aperto

Tipologia: Documento in versione editoriale
Dimensione 709.32 kB
Formato Adobe PDF
709.32 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1037235
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact