Melt blending of homopolymers is an effective way to achieve an attractive combination of polymer properties. Dynamic vulcanization of fatty-acid-based polyester polyol with glycerol and poly(l-lactic acid) (PLLA) in the presence of hexamethylene diisocyanate (HDI) was performed with the aim of toughening PLLA. The dynamic vulcanization in an internal mixer led to the formation of a PLLA/PU biobased blend. Melt torque, Fourier transform infrared (FTIR), and gel fraction analysis demonstrated the successful formation of cross-linked polyurethane (PU) inside the PLLA matrix. Scanning electron microscopy (SEM) analysis showed that the PLLA/PU blends exhibit a sea-island morphology. Gel fraction analysis revealed that a rubbery phase was formed inside the PLLA matrix, which was insoluble in chloroform. FTIR analysis of the insoluble part shows the appearance of an absorption band centered at 1758 cm-1, related to the crystalline carbonyl vibration of the PLLA component, thus suggesting the partial involvement of PLLA chains in the cross-linking reaction. The overall content of the PU phase in the blends significantly affected the mechanical properties, thermal stability, and crystallization behavior of the materials. The overall crystallization rate of PLLA was noticeably decreased by the incorporation of PU. At the same time, polarized light optical microscopy (PLOM) analysis revealed that the presence of the PU rubbery phase inside the PLLA matrix promoted PLLA nucleation. With the formation of the PU network, the impact strength showed a remarkable increase while Young's modulus correspondingly decreased. The blends showed slightly reduced thermal stability compared to the neat PLLA.

Renewable and Tough Poly(l -lactic acid)/Polyurethane Blends Prepared by Dynamic Vulcanization

Fenni S. E.;Monticelli O.;Cavallo D.
2020-01-01

Abstract

Melt blending of homopolymers is an effective way to achieve an attractive combination of polymer properties. Dynamic vulcanization of fatty-acid-based polyester polyol with glycerol and poly(l-lactic acid) (PLLA) in the presence of hexamethylene diisocyanate (HDI) was performed with the aim of toughening PLLA. The dynamic vulcanization in an internal mixer led to the formation of a PLLA/PU biobased blend. Melt torque, Fourier transform infrared (FTIR), and gel fraction analysis demonstrated the successful formation of cross-linked polyurethane (PU) inside the PLLA matrix. Scanning electron microscopy (SEM) analysis showed that the PLLA/PU blends exhibit a sea-island morphology. Gel fraction analysis revealed that a rubbery phase was formed inside the PLLA matrix, which was insoluble in chloroform. FTIR analysis of the insoluble part shows the appearance of an absorption band centered at 1758 cm-1, related to the crystalline carbonyl vibration of the PLLA component, thus suggesting the partial involvement of PLLA chains in the cross-linking reaction. The overall content of the PU phase in the blends significantly affected the mechanical properties, thermal stability, and crystallization behavior of the materials. The overall crystallization rate of PLLA was noticeably decreased by the incorporation of PU. At the same time, polarized light optical microscopy (PLOM) analysis revealed that the presence of the PU rubbery phase inside the PLLA matrix promoted PLLA nucleation. With the formation of the PU network, the impact strength showed a remarkable increase while Young's modulus correspondingly decreased. The blends showed slightly reduced thermal stability compared to the neat PLLA.
File in questo prodotto:
File Dimensione Formato  
Renewable and Tough Poly(L‑lactic acid) Polyurethane Blends_compressed.pdf

accesso aperto

Tipologia: Documento in versione editoriale
Dimensione 1.59 MB
Formato Adobe PDF
1.59 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1034016
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
social impact