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ABSTRACT: Melt blending of homopolymers is an effective way to achieve

an attractive combination of polymer properties. Dynamic vulcanization of

fatty-acid-based polyester polyol with glycerol and poly(r-lactic acid)

(PLLA) in the presence of hexamethylene diisocyanate (HDI) was

performed with the aim of toughening PLLA. The dynamic vulcanization

in an internal mixer led to the formation of a PLLA/PU biobased blend.

Melt torque, Fourier transform infrared (FTIR), and gel fraction analysis

demonstrated the successful formation of cross-linked polyurethane (PU)

inside the PLLA matrix. Scanning electron microscopy (SEM) analysis

showed that the PLLA/PU blends exhibit a sea—island morphology. Gel

fraction analysis revealed that a rubbery phase was formed inside the PLLA

matrix, which was insoluble in chloroform. FTIR analysis of the insoluble part shows the appearance of an absorption band centered
at 1758 cm™, related to the crystalline carbonyl vibration of the PLLA component, thus suggesting the partial involvement of PLLA
chains in the cross-linking reaction. The overall content of the PU phase in the blends significantly affected the mechanical
properties, thermal stability, and crystallization behavior of the materials. The overall crystallization rate of PLLA was noticeably
decreased by the incorporation of PU. At the same time, polarized light optical microscopy (PLOM) analysis revealed that the
presence of the PU rubbery phase inside the PLLA matrix promoted PLLA nucleation. With the formation of the PU network, the
impact strength showed a remarkable increase while Young’s modulus correspondingly decreased. The blends showed slightly
reduced thermal stability compared to the neat PLLA.

B INTRODUCTION Dynamic vulcanization and reactive blending represent a
compelling way to tailor the properties and produce polymer
blends with high performance. The technique involves the in
situ reaction between PLA and added components during melt
blending, with the formation of a cross-linked rubber phase
inside the PLA matrix. Most often, the formed rubbery phase is
: e i a polyurethane (PU). PU is generally synthesized through a
presents good properties, such as high rigidity and mechanical reaction of isocyanates (possessing more than one —NCO
strength, high melting point, excellent biocompatibility and group) with compounds having active hydrogen functional
biodegradability, and easy processability. " However, PLA groups, such as polyamines, polycarbonates, polyethers, and

In recent years, biodegradable polymers, especially those
derived from renewable resources, have attracted increasing
interest to alleviate the environmental concerns on the use of
conventional petroleum-based polymers. Poly(lactic acid)
(PLA) is an excellent, environmentally friendly plastic. It

also suffers from several drawbacks, which largely restricts its polyols (—OH). The final polyurethane product is composed
widespread application. In particular, the slow crystallization of soft polymer segments (eg polyethers or polyols) and
kinetics, low heat distortion temperatures, and high inherent isocyanate-based hard/solid segments.” 312,17,21-29

brittleness limit the applications of PLA. Therefore, significant Several works reported the dynamic vulcanization of PLA
efforts have been devoted in the last decade to enhance the with different components, i.e., epoxidized synthetic elasto-
properties of PLA, in particular its toughness. Several strategies

have been applied to overcome brittleness such as Received: June 11, 2020

plasticization, the addition of fillers, melt blending with flexible Accepted: August 4, 2020

polymers (elastomers/rubbers), and copolymerization. Chem- Published: October 8, 2020

ical modification, including grafting and reactive blending or

dynamic vulcanization, was found to be an efficient approach

for PLA toughening.l’—/_21
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mers, unsaturated polymers, and natural rubber, leading to the
formation of supertough PLA materials with higher mechanical
characteristics. The mechanism of ductility improvement is
related to two main factors, which are the chemical
modification of the molecular structure and the improved
compatibility between the blend component.”>**~*

Several examples of supertoughened PLA blends obtained
by either reactive interfacial compatibilization, or dynamic
vulcanization with the formation of a second component
rubbery phase are reported. To prepare systems using the first
strategy, several acrylate-glycidyl copolymers have been
adopted, e.g., poly(ethylene-glycidyl methacrylate) (EGMA)
and ethylene-co-acrylic ester-co-glycidyl methacrylate (E-AE-
GMA) rubber.**** Several types of rubbers vulcanized in situ
within the PLA matrix have been tested, including (i) nitrile
rubber cross-linked with dicumyl peroxide;”” (i) soybean oil
vulcanized by free radical cross-linking agents;30 (iil) zinc
ionomers of the ethylene methacrylic acid copolymer (EMAA-
Zn) and elastomeric ethylene-butyl acrylate-glycidyl meth-
acrylate terpolymer (EBA-GMA);”" and (iv) poly(glycerol
succinate-co-maleate) (PGSMA).*"" Besides the toughening
effect, in some cases, an increase in crystallization rate or
nucleation density of the material was also reported.””***’

The use of isocyanate-based crosslinkers or chain extenders
enables us to obtain both the formation of a dynamically
vulcanized rubber phase, when reactive oligomers with low T,
are added to PLA, and the simultaneous interfacial
compatibilization of the resulting blend, thanks to the reaction
with the terminal hydroxyl groups of the PLA chains. Different
“soft” building blocks have been used to form the polyurethane
in situ, both oil-based, such as poly(ethylene glycol),*
polyester polyol,** and polyurethane elastomer Eregolymers;y'
or biorenewable, e.g, based on castor oil.*>*****" Largely
enhanced ductility and impact resistance were reported for
PLA-based blends, in addition to faster cold crystallization in
most cases. Excellent compatibility of the formed rubber with
PLA is generally expected because of the reported miscibility of
poly(lactide) with some polyethers and polyesters.

The development of biobased rubbery tough materials
remains an important research objective. Fatty-acid-based
polymers are promising candidates for this aim. In this work,
we aimed to toughen poly(L-lactic acid) (PLLA) and prepare
an almost fully biobased material by dynamic vulcanization
with hexamethylene diisocyanate (HDI), using PLLA, glycerol,
and a polyester polyol derived from vegetable oils. The latter is
produced by polymerization of fatty-acid dimers containing 36
carbon atoms and has the advantage of being commercially
available. The morphology, thermal, and crystallization
behavior were investigated and correlated with the measured
mechanical properties.

B RESULTS AND DISCUSSION

Chemical Analysis. Dynamic vulcanization was used to
prepare PLLA/PU biobased blends in which the cross-linked
PU was formed by the in situ polymerization of a polyester
polyol oil, glycerol, and HDI The reactive blending was
performed in a Brabender internal mixer. All materials were
prepared under the same conditions, including neat PLLA, for
comparison purposes.

Interfacial compatibilization between the PLLA matrix and
the PU phase can, in principle, take place, thanks to the
reaction of the terminal hydroxyl groups of PLLA with the
—NCO groups of HDI. Figure 1 reports the measured melt

Figure 1. Torque versus time curves during the dynamic vulcanization
of the different systems.

torque versus time during the dynamic vulcanization process.
As judged from the instrumental response, dynamic vulcan-
ization displays two steps. The first step is related to the
melting of PLLA pellets, and it is characterized by a sharp peak
in the measured torque, which decreases gradually with mixing
time because of both the melting of PLLA pellets and the
lubrication/plasticization effect of polyol and glycerol.>>*” The
second step starts with the addition of HDI: the torque
increases gradually to an almost stable plateau because the
viscosity of the system increases during the vulcanization
reaction. The time at which the torque remains approximately
constant indicates the end of the cross-linking process. It is
worth noting that the measured torque decreases slightly when
HDI is added. We hypothesize that this might be related to
some extent of chain scission due to the high reactivity of the
isocyanate.

To confirm the presence of a cross-linked PU network inside
the PLLA matrix, we isolated a cross-linked fraction from the
samples by prolonged extraction with chloroform and carried
out further analysis. Figure 2 shows the weight percentage of

Figure 2. Percentage of the insoluble fraction (after Soxhlet extraction
with chloroform) in the different PLLA/PU blends.

insoluble residues of the different PLLA/PU blends. The gel
fraction increases gradually with the increase of the polyol
content. However, in all cases, the vulcanized part weight was
lower than the total content of the added reactive mixture
(polyester polyols oil, glycerol, and HDI). This difference
likely indicates that only a part of the polyol chains is
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effectively cross-linked, notwithstanding the stoichiometric
ratios between isocyanate and hydroxyl groups. On the other
hand, the presence of a non-negligible insoluble fraction
confirms that the aim of producing a PLLA/rubber blend in
situ has been achieved.

Fourier transform infrared (FTIR) was performed to
confirm the occurrence of the reaction. The results related to
the different as-prepared PLLA/PU blends and the insoluble
fractions are reported in Figures 3 and4, respectively. All of the

Figure 3. FTIR spectra of the different PLLA/PU blends.

Figure 4. FTIR spectra of the neat PLLA and the insoluble fractions
of different PLLA/PU blends.

characteristic absorption peaks of neat PLLA were also
observed in the PLLA/PU blends spectra. Moreover, distinct
absorption bands are present in the PLLA/PU samples. In
particular, the peak at 1540 cm™', which characterizes the
urethane group, is clearly evidenced and increases with the
polyol concentration. Accordingly, no trace of the isocyanate
group peak of HDI (2270 cm™") could be detected in the
reacted samples.

Figure 4 shows the spectra of the neat PLLA and the
insoluble fraction of PLLA/10PU, PLLA/20PU, and PLLA/
30PU blends. The bands at 1540 and 3333 cm™!, which are
related to the urethane groups, are distinctly evident in the
vulcanized fractions.”** Figure 4 also reveals an absorption
band centered at 1758 cm™' in the spectra of insoluble
fractions. This peak is related to the carbonyl group vibration
of PLLA unit in the crystalline cell™® and suggests the
occurrence of the reaction between PLLA chains ends and
HDI, to a certain extent. The obtained FTIR results confirm
the successful dynamic vulcanization (of polyester polyol oil,
glycerol, and HDI). They indicate the occurrence of a possible
interfacial compatibilization between PLLA and PU through
the formation of a chemical bond between the phases. This
chemical modification will strongly affect the morphology,
mechanical properties, and thermal and crystallization behavior
of the final blends, as it will be shown hereafter.

Scanning Electron Microscopy (SEM). In Figure S, some
selected SEM micrographs of the cryofractured surfaces of the
neat PLLA and PLLA/PU blends with different PU contents
are presented. The neat PLLA showed a typical brittle fracture
characterized by a smooth surface appearance. On the other
hand, all of the PLLA/PU vulcanized blends exhibit a rough
surface featuring a phase-separated morphology with some
evidence of deformed areas. Cryofractured surfaces of PLLA/
SPU, display clear cavities due to the detachment of the PU
dispersed phase. This suggests a low interfacial adhesion
between PLLA and PU for this blend composition. For the PU
content higher than 5 wt %, the dispersed PU phases in the
PLLA matrix possess an irregular shape. Good adhesion is
apparent in these systems since no gaps were observed. This
indicates the efficiency of the interfacial compatibilization
between the two phases as a consequence of the dynamic
vulcanization process. The obtained results are in agreement
with the chemical changes presented in Figures 2 and 4.

On the other hand, the size of the dispersed PU phase was
found to increase with the PU content, going from around
0.5—1 pm droplets in the PLLA/SPU to domains of the order
of $ ym in the PLLA/30PU blend. The increase in the PU
domain size with the increase of the PU content could result
from the coalescence of the PU phase, induced by its
immiscibility with the PLLA matrix.

Polarized Light Optical Microscopy (PLOM). PLOM was
used to study the spherulitic morphology and the super-
structural growth rate of the PLLA phase within the different
blends. Figure 6 shows examples of PLOM micrographs
obtained for the different samples after 10 min of isothermal
crystallization at 140 °C. The neat PLLA (Figure 6a) showed
regular spherulites with large diameters. The regularity and
perfection of the PLLA spherulites in the PLLA/PU blends
decreased with the increase of the PU content, as small PU
domains in the form of particlelike inclusions can be observed
within the spherulite structure. In particular, at the highest
content of PU, the characteristic radial fibrillar structure of the
spherulite is not distinguishable anymore. The decreased PLLA
spherulites regularity and texture perfection could be attributed
to the interfibrillar segregation of the soft PU domains and
polyols (the polyester polyol and glycerol). In fact, the
micrometer-sized cross-linked polyol phase cannot be easily
moved along with the growth front of the PLLA spherulites;
hence, it will be engulfed inside the PLLA spherulites and thus
strongly affect the lamellar arrangement. Similar results have
been reported in the literature for PLLA crystallizing from an
immiscible blend showing a certain interaction with the
matrix.”> Another reason that could affect the PLLA
spherulites regularity is the lowered PLLA chain mobility
due of the reaction with PU after dynamic vulcanization.

Besides the morphology, the nucleation density of PLLA was
affected by the dynamic vulcanization and the presence of the
PU phase. Hence, the number of PLLA nuclei increase
significantly with the increase of PU content, as shown from an
enlarged view (Figure 7). The increase in the PLLA nuclei
concentration could be due to (i) some transfer of nucleating
impurities from the different additives to the PLLA matrix and
(ii) an interface-induced nucleation mechanism due to PLLA/
PU phase separation, perhaps ascribed to local order due to the
interactions between PLLA and PU.*~*

Results of the PLLA spherulite growth rates as a function of
the chosen crystallization temperature in the studied systems
are shown in Figure 8. Overall, the effect of dynamic
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Figure S. SEM images of different PLLA/PU blends with different concentrations of PU phase: (a) neat PLLA, (b) PLLA/SPU, (c) PLLA/10PU,
(d) PLLA/20PU, and (e, f) PLLA/30PU.

Figure 6. Polarized optical microscopy (POM) micrographs at a crystallization temperature of 140 °C for neat PLLA (a), PLLA/10PU (b), and
PLLA/30PU (c).

26424 https://dx.doi.org/10.1021/acsomega.0c02765
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Figure 7. POM micrographs of the PLLA/PU blends after 10 min at 138 °C: (a) neat PLLA, (b) PLLA/SPU, (c) PLLA/20PU, and (d) PLLA/

30PU.

Figure 8. Growth rate of PLLA spherulites for neat PLLA and
different PLLA/PU blends.

vulcanization on the growth rate is not large. This is consistent
with the phase-separated blend morphology. However, some
small variations could be appreciated. In particular, we note
that the PLLA spherulitic growth rate of PLLA/SPU and
PLLA/10PU was slightly higher than that of the neat PLLA,
which is tentatively explained by a decrease in the molecular
weight, due to chain scission caused by HDI and thermal
degradation. Indeed, a lower molecular weight of these blends
with respect to the neat PLLA could also be inferred by the
lower torque value at the end of the vulcanization (Figure 1).A
lower chain length leads to faster spherulitic growth.”® For PU
contents higher than 10 wt %, the PLLA growth rate is instead
slightly decreased, in comparison with the other samples.
Possibly, this depression is related to the extent of chemical
bonding between PLLA and PU phase, which hinders the

PLLA chain mobility, or the disturbance brought by the PU
particles and different additives at the growth front since PU
must be segregated at the interfibrillar level. This will lower the
concentration of PLLA segments at the growing front and
reduce the spherulitic growth rate. Due to the increased
nucleation density with PU content, the minimum probed
isothermal crystallization temperature, where we could clearly
follow the growth rate, increased accordingly. Hence, for the
neat PLLA, we were able to measure the growth rate starting
from T, of 130 °C while the minimum applied T, was 138 °C
for the PLLA/30PU blend.

Crystallization Behavior of PLLA/PU Blends by Differ-
ential Scanning Calorimetry (DSC). DSC was employed to
study the thermal transitions of the neat PLLA and PLLA/PU
blends. The different temperatures and enthalpies of the
thermal events recorded during nonisothermal crystallization
and melting at a scan rate of 10 °C/min are summarized in
Table 1. At the same time, Figure 9 shows the respective DSC
cooling and heating scans.

The neat PLLA crystallizes on cooling at around 103 °C,
and the crystallization process is completed during the heating
scan via a small cold crystallization exotherm at around 92 °C
(see Figure 9a). Its endothermic melting peak was observed at
175 °C, and just before melting the PLLA crystals, a slight
exothermic event is observed, tentatively attributed to the
reorganization of a disordered modification into the more
stable a-form.”"** For PLLA/PU blends with different PU
contents, the DSC cooling scans show that the PLLA phase
exhibits a crystallization exotherm peaked at around 106 °C for
all of the samples, and the vitrification of the PLLA phase is
also observed during cooling at around 63 °C, differently from

https://dx.doi.org/10.1021/acsomega.0c02765
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Table 1. Transition Temperatures and Enthalpies of PLLA
Phase during the Nonisothermal Scans of the Different
PLLA/PU Blends at a Cooling/Heating Rate of 10 °C/

..a34
min

PLLA T, AH,, T, AH, T, AH, X,
(wte) (°C)  (U/g) (°C) (/g) (°C) (/g) (%)
100 923  -09 1029 —207 1748 318 33
95 987 —11.8 1054  —S8 1724 274 17
90 100 -152 1067  -3.6 1734 290 15
80 99.5  —114 1064  —42 1731 241 14
70 985 83 1066  —45 1732 224 1S

“AH,,° of 100% crystalline PLA is 93.7 J/g.

the neat PLLA where the glass transition is undetectable due to
higher crystallinity. No distinct transitions or peaks related to
the PU phase could be observed. The crystallization enthalpy
on cooling decreases significantly in the dynamically vulcanized
samples (see Table 1), testifying the hindered crystallization in
the blend.

The heating process is shown in Figure 9b. The neat PLLA
displays an almost negligible cold crystallization peak at around
92 °C. At the same time, the PLLA/PU blends all exhibit a
larger cold crystallization peak at about 99 °C. The cold
crystallization enthalpy was affected as well and increased
largely in the PLLA/PU blends (from 0.9 J/g in the neat PLLA
to 8 J/g in PLLA/30PU). The crystallinity degree (X.%) of
PLLA at the end of the temperature protocol, evaluated from
the measured melting enthalpy after correction for the PLLA
weight fraction in the particular blend, dropped from 33% for
the neat PLLA to around 15% when the vulcanized PU is
added. We must deduce that a meaningful hindrance effect of
the PU phase on the crystallization is present, when the
process occurs at temperatures lower than those probed by
PLOM experiments. In fact, a significant decrease in the
growth rate was only observed for the PLLA/30PU sample in
the probed temperature range (as observed by PLOM). These
noticeable decreases in the crystallinity, as shown by the DSC
analysis, might be due to the higher viscosity of the blends
compared to that of the neat PLLA.

Thermal Stability of the PLLA/PU Blends. Thermal stability
of the neat PLLA and PLLA/PU blends under nonoxidative
conditions was investigated by thermogravimetric analysis

(TGA). The analysis was performed in the range of 25—800
°C at a heating rate of 10 °C/min under a constant nitrogen
gas flow. Figure 10 shows the TGA weight loss curves as a

Figure 10. TGA curves of the PLLA and PLLA/PU blends.

function of temperature. From these curves, we can identify
the onset and end of the thermal decomposition, indicated by
Ty (5% of mass loss) and T,y (100% of mass loss),
respectively.

The neat PLLA displays a single-stage decomposition
process, with Ts = 304 °C and T,,q around 374 °C. On the
other hand, all the PLLA/PU blends show a two-stage
decomposition, obviously related to the presence of two
chemically distinct units, the PLLA and polyol phases. In fact,
the magnitude of mass loss at the different steps varies in
agreement with the blend composition, i.e,, the percentage of
low-temperature decomposition event decreases with increas-
ing PU fraction and vice versa for the high-temperature event.
An almost quantitative relation with the nominal content of
PU is found.

For what concerns the degradation temperatures, the onset
of PLLA degradation shifts to lower temperature after dynamic

Figure 9. DSC cooling (a) and heating (b) curves recorded at a scan rate of 10 °C/min for neat PLLA and PLLA/PU blends.
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vulcanization and with the increasing PU phase content. In
particular, T decreased from 304 °C for the neat PLLA to
around 276 °C for PLLA/30PU.

The decomposition stage with T4 around 336 °C observed
in the blends was attributed to the urethane bonds breaking,39
while the decomposition event ending at around 485 °C can be
ascribed to the thermal degradation of the aliphatic segments
of the polyester polyol.”’

Notwithstanding the slight decrease in the temperature of
initial thermal degradation, a good thermal stability of different
blends was observed, since the values of the decomposition
temperatures are still at least 50 °C above the commonly
employed processing temperature.

Tensile and Impact Properties. Generally, the mechanical
properties of interest of polymers are related to their strength
and toughness. Tensile elongation at the break and the impact
strength are considered as measures of material’'s toughness,
whereas the flexural modulus and tensile strength at the break
are informative of material’s strength.’** Figure 11 shows the

Figure 11. Tensile stress—strain curves for the neat PLLA and PLLA/
PU blends.

corresponding stress—strain curves, while Figure 12a summa-
rizes the results of the mechanical tensile test on different
systems. The inclusion of vulcanized PU phase affects the
system’s strength and rigidity. In particular, Young’s modulus

Figure 12. (a) Tensile strength and Young’s modulus. (b) Impact
strength of PLLA and the PLLA/PU blends.

decreases steadily to about one third its value in the neat PLLA
when the PU content in the blend is 30 wt % of PU. Similarly,
the stress at the break of the same blend is about 2 times lower
than that of the neat PLLA. However, this softening of the
material is not accompanied by a significant increase in the
elongation at break, which keeps very low, below 2% strain.

As such, the modified PLLA still behaves as a brittle material
upon tensile deformation. The behavior of the PLLA matrix
dominates the mechanical response of the blend perhaps due
to insufficient degree of molecular interactions between the
two components, which leads to interfacial debonding, and the
lack of any plasticization effects of the polyol segments on
PLLA.

On the other hand, the Charpy impact tests revealed a
reasonably good improvement in the impact strength values of
the PLLA/PU blends. More specifically, the impact strength of
the neat PLLA was found to be around 1 kJ/m? indicating the
brittle nature of the material. In comparison, significant
improvement of the impact strength of the PLLA/PU blends
was observed; thus, the impact strength increases gradually
with the PU content (see Figure 12b) up to a value of 7 kJ/m?
for the PLLA/30PU blend (approximately 7 times that the
value of the neat PLLA). It is deduced that the dispersed PU
rubbery domains can partially absorb the energy released upon
impact and hinder the crack growth, thus providing higher
toughness to the PLLA/PU blends.>>3%>° However, in the
tensile deformation mode, the failure of the sample is still
dominated by the strong tendency of the PLLA matrix to
localize plastic deformation, which easily leads to the
development of crazes.

Similar enhancements of the impact strength of dynamically
vulcanized PLA were reported in the case of poly(i-lactic
acid)/poly(butylene succinate)/dicumyl peroxide (PLLA/
PBS/DCP),” poly(lactic acid)/thermoplastic starch (PLA/
TPS),” poly(r-lactic acid)/nitrile-butadiene rubber (PLLA/
NBR),”” poly(lactic acid)/polyurethane elastomer prepolymer
(PLA/PUEP),** polylactide/cross-linked polyurethane (PLA/
CPU),” poly(lactic acid)/ethylene-methyl acrylate-glycidyl
methacrylate (PLA/EMA-GMA),*® polylactide/castor oil-
based polyurethane prepolymer (PLA/COPUP),** and poly-
(lactic acid)/poly(glycerol succinate-co-maleate) (PLA/
PGSMA).*"!

B CONCLUSIONS

The present work discusses the efficiency of dynamic
vulcanization reaction and the formation of a PU phase for
toughening brittle PLLA. The dynamic vulcanization of PLLA,
polyester polyol, glycerol, and HDI was successfully accom-
plished, and almost fully biobased PLLA/PU blends were
obtained. An analysis of the FTIR spectra, extracted and
insoluble fractions, and the evolution of torque during sample
preparation demonstrated the in situ formation of a PU phase,
thanks to the reaction between —NCO groups of HDI with the
—OH groups of the polyester polyol, glycerol, and PLLA. The
partial reaction with PLLA chain gives rise to some extent of
interfacial compatibilization between PLLA and dispersed PU
phase. The impact strength was significantly increased by the
increase in the PU content; however, the tensile properties
were not largely enhanced. For what concerns the thermal
properties, DSC showed a depression in the nonisothermal
crystallization rate of the blends, as compared to the neat
PLLA. Thermogravimetric analysis demonstrated that all
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PLLA/PU blends were sufficiently stable at the typical
processing temperatures of PLLA.

Dynamic vulcanization to enable the in situ formation of a
biobased elastomeric phase is thus proposed as a promising
route for the improvement of PLLA properties for potentially
widening its application range.

B MATERIALS AND METHODS

Materials. Poly(i-lactic acid) (PLLA) (Synterra 1010) was
supplied by Synbra Technology (Etten-Leur, Netherlands).
PLLA 1010 is a crystallizable grade of PLLA with an L-lactide
content of about 99 wt % and an average molecular weight of 1
X 10° g/mol. The melting point is in the range 175—180 °C,
and the glass transition temperature (Tg) is around 55—60 °C.
The polymer shows a melt flow rate (MFR) of about 12 g/10
min (190 °C, 2.16 kg, ISO 1133) and a density of 1.25 g/cm”.
PLLA was dried at 60 °C overnight prior to use.

Priplast 3196 is a dimerized fatty-acid-based polyester polyol
with molecular weight of 3 kg/mol. The polyol has been
synthesized from C36 fatty-acid dimers derivative, in turn,
obtained by dimerization of unsaturated C18 fatty acids (such
as oleic, linoleic, and linolenic acids). This material was kindly
supplied by Croda Factory. Glycerol (49767) with a glycerol
content of 99.5%, hexamethylene diisocyanate (HDI, 52649)
(>99%), and chloroform (C2432) with a purity of 99.5% were
purchased from Sigma-Aldrich and used as received. Cellulose
extraction thimbles (Grade 208) were purchased from
AquaLab technologies.

Sample Preparation. Dynamic vulcanization of the
Priplast 3196 and glycerol in the presence of HDI inside the
PLLA matrix was performed in a Plastograph Brabender
internal mixer (W50 EHT, Brabender GmbH, Germany) at
200 °C using a rotor speed of 60 rpm for sufficient time
(around 18 min). PLLA, polyol, and glycerol in predetermined
amounts were first premixed in the Brabender at 200 °C and
60 rpm for 8 min to obtain a uniform melt. Then dynamic
vulcanization of the polyol and glycerol was initiated by adding
HDI under the same mixing conditions. An initial mass of
around 40 g was used in each blend and a final yield of about
80—85% was obtained.

When the dynamic vulcanization occurred, the melt torque
increased first and then leveled off (after approximately 10
min), which was interpreted as the end of the dynamic
vulcanization process. The molar ratio of the —=NCO group of
HDI to the —OH group (of the polyol and glycerol) was fixed
at 1:1, while the glycerol/polyol weight ratio was kept at about
10%. Five samples with the PLLA weight fraction of 100, 95,
90, 80, and 70 were prepared. The respective sample codes are
reported in Table 2. For the sake of comparison, the neat
PLLA was also treated under the same processing conditions in
the internal mixer.

Blend Characterization. Determination of the Cross-
Linked Fraction. Samples with a predetermined weight (m; ~
1 g) were enclosed into cellulose extraction thimbles. The
extraction was performed using a Soxhlet extractor for 3 days
with an excess volume of boiling chloroform. The fraction of
the sample that did not dissolve in chloroform but just swelled
was then weighed (m;) after complete drying under vacuum at
room temperature. The insoluble fraction must consist of the
vulcanized PU and possibly PLLA chains, which reacted with
PU. The cross-linked fraction was calculated according to eq 1

cross — linked fraction (%) = (m,/m,) X 100 (1)

Table 2. Composition of the Prepared Samples (in Weight
Percentage, wt %)

PLLA priplast 3196 glycerol
sample (wt %) (wt %) (wt %) HDI (wt %)
neat PLLA 100 0 0 0
PLLA/ 95 3.42 0.38 12
SPU
PLLA/ 90 6.84 0.76 2.4
10PU
PLLA/ 80 13.68 1.52 4.8
20PU
PLLA/ 70 20.52 2.28 7.2
30PU

where m; is the initial sample weight and my is the weight of the
insoluble part after extraction.**

Fourier Transform Infrared Analysis. FTIR spectra of the
PLLA/PU blends and insoluble sample fractions were
recorded at room temperature using a Bruker IFS66
spectrometer equipped with an attenuated total reflectance
(ATR) accessory. A total of 32 spectra with a resolution of 4
cm™' were acquired for each sample in the range 500—4000
cm ™
Scanning Electron Microscopy (SEM). Different PLLA/PU
blends were cryogenically fractured after 3 h of immersion in
liquid nitrogen. The fracture surfaces were observed by SEM
after gold coating under vacuum using a Hitachi S-2700
electron microscope. Micrographs of the most representative
inner regions of the specimens are reported.

Polarized Light Optical Microscopy. PLOM was employed
to determine the morphology and measure the growth rate of
PLLA spherulites. Films with a thickness of around 30 ym
were prepared by microtoming and by gentle compression
molding between two microscope glass slides on a hot plate.
The micrographs of blend films were recorded with a LEICA
DC 420 camera. A METTLER FP35Hz hot stage was
employed to impose the desired thermal history.

The isothermal spherulitic growth rates of the neat PLLA
and the PLLA phase within the PLLA/PU blends were
measured. The samples were first heated to 200 °C for 3 min
to erase the previous thermal history and then cooled to the
chosen crystallization temperature, at which spherulitic growth
was monitored in time by suitable image acquisition.

Differential Scanning Calorimetry. DSC was performed
using a DSC1 STAR® system (Mettler-Toledo, Switzerland).
The samples, with weight in the range of 3—5 mg and prepared
by gentle compression molding between two glass slides, were
melted at 200 °C for 3 min and then cooled to —50 °C at a
rate of 10 °C/min. After cooling, the polymers were
subsequently heated to 200 °C at 10 °C/min. During the
DSC runs, a nitrogen flow at a rate of 20 mL/min was
constantly applied. The crystallinity degree X. (%) of the
PLLA component in the different blends was calculated using
the following formula

X, (%) = (AH,, — AH.)/(AH,° X W) @

where AH,, and AH,_ are the measured enthalpies of melting
and cold crystallization for the PLLA phase in the blends,
AH,° is the melting enthalpy of 100% crystalline PLA (93.7 J/
g), and W; is the weight fraction of PLLA in the blend.”*
Thermogravimetric Analysis (TGA). TGA was performed
using TGA Mettler-Toledo (STAR® system Mettler thermo-
balance). The temperature was increased from 25 to 800 °C
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with a heating rate of 10 °C/min under a nitrogen flow of 80
mL/min (Table 2).

Tensile Tests. The tensile properties of the PLLA/PU
blends were determined with an Instron mechanical tester
(Instron S565) using a crosshead speed of S mm/min and dog
bone specimens according to the ASTM-D638 standard. The
specimens were cut from a compression molded plate, which,
in turn, was prepared by compression of the blend in a
“CARVER” manual press at 200 °C and 3.5 ton for 3 min,
followed by continuous cooling to room temperature with tap
water. The reported measured properties (Young’s modulus,
strength, and deformation at the break) are average values
from five different specimens.

Impact Test. The impact strengths of different PLLA/PU
blends were measured using a Pendulum Impact Testing
Machine (Charpy Zwick 5102). The specimens of 60 mm X 10
mm X 2 mm were cut from a compression molded plate
(prepared as mentioned in the tensile section) and a small
notch (of around 1 mm in depth) was produced by means of a
manual saw. The measured values are of significance for a
relative comparison between the neat and the blended PLLA
materials only, given that customized (nonstandard) sample
preparation procedure and test were adopted. Five analyses
were performed for each sample, and the average values are
reported.
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