The symmetric signature is an invariant of local domains which was recently introduced by Brenner and the first author in an attempt to find a replacement for the F-signature in characteristic zero. In the present note we compute the symmetric signature for two-dimensional cyclic quotient singularities, i.e., invariant subrings k[[u; v]] G of rings of formal power series under the action of a cyclic group. Equivalently, these rings arise as the completions (at the irrelevant ideal) of two-dimensional normal toric rings. We show that for this class of rings the symmetric signature coincides with the F-signature.
The symmetric signature of cyclic quotient singularities
Caminata A.;
2019-01-01
Abstract
The symmetric signature is an invariant of local domains which was recently introduced by Brenner and the first author in an attempt to find a replacement for the F-signature in characteristic zero. In the present note we compute the symmetric signature for two-dimensional cyclic quotient singularities, i.e., invariant subrings k[[u; v]] G of rings of formal power series under the action of a cyclic group. Equivalently, these rings arise as the completions (at the irrelevant ideal) of two-dimensional normal toric rings. We show that for this class of rings the symmetric signature coincides with the F-signature.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
4) The symmetric signature of cyclic quotient singularities [Journal of Commutative Algebra].pdf
accesso chiuso
Tipologia:
Documento in versione editoriale
Dimensione
299.81 kB
Formato
Adobe PDF
|
299.81 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.