AIMS: The purpose of this work is to find the gut microbial fingerprinting of pediatric patients with type 1 diabetes. METHODS: The microbiome of 31 children with type 1 diabetes at onset and of 25 healthy children was determined using multiple polymorphic regions of the 16S ribosomal RNA. We performed machine-learning analyses and metagenome functional analysis to identify significant taxa and their metabolic pathways content. RESULTS: Compared with healthy controls, patients showed a significantly higher relative abundance of the following most important taxa: Bacteroides stercoris, Bacteroides fragilis, Bacteroides intestinalis, Bifidobacterium bifidum, Gammaproteobacteria and its descendants, Holdemania, and Synergistetes and its descendants. On the contrary, the relative abundance of Bacteroides vulgatus, Deltaproteobacteria and its descendants, Parasutterella and the Lactobacillus, Turicibacter genera were significantly lower in patients with respect to healthy controls. The predicted metabolic pathway more associated with type 1 diabetes patients concerns "carbon metabolism," sugar and iron metabolisms in particular. Among the clinical variables considered, standardized body mass index, anti-insulin autoantibodies, glycemia, hemoglobin A1c, Tanner stage, and age at onset emerged as most significant positively or negatively correlated with specific clusters of taxa. CONCLUSIONS: The relative abundance and supervised analyses confirmed the importance of B stercoris in type 1 diabetes patients at onset and showed a relevant role of Synergistetes and its descendants in patients with respect to healthy controls. In general the robustness and coherence of the showed results underline the relevance of studying the microbioma using multiple polymorphic regions, different types of analysis, and different approaches within each analysis.

Gut Microbiota in T1DM-Onset Pediatric Patients: Machine-Learning Algorithms to Classify Microorganisms as Disease Linked

Squillario M.;Barla A.;Piccolo G.;Patti G.;Maghnie M.;d'Annunzio G.
2020-01-01

Abstract

AIMS: The purpose of this work is to find the gut microbial fingerprinting of pediatric patients with type 1 diabetes. METHODS: The microbiome of 31 children with type 1 diabetes at onset and of 25 healthy children was determined using multiple polymorphic regions of the 16S ribosomal RNA. We performed machine-learning analyses and metagenome functional analysis to identify significant taxa and their metabolic pathways content. RESULTS: Compared with healthy controls, patients showed a significantly higher relative abundance of the following most important taxa: Bacteroides stercoris, Bacteroides fragilis, Bacteroides intestinalis, Bifidobacterium bifidum, Gammaproteobacteria and its descendants, Holdemania, and Synergistetes and its descendants. On the contrary, the relative abundance of Bacteroides vulgatus, Deltaproteobacteria and its descendants, Parasutterella and the Lactobacillus, Turicibacter genera were significantly lower in patients with respect to healthy controls. The predicted metabolic pathway more associated with type 1 diabetes patients concerns "carbon metabolism," sugar and iron metabolisms in particular. Among the clinical variables considered, standardized body mass index, anti-insulin autoantibodies, glycemia, hemoglobin A1c, Tanner stage, and age at onset emerged as most significant positively or negatively correlated with specific clusters of taxa. CONCLUSIONS: The relative abundance and supervised analyses confirmed the importance of B stercoris in type 1 diabetes patients at onset and showed a relevant role of Synergistetes and its descendants in patients with respect to healthy controls. In general the robustness and coherence of the showed results underline the relevance of studying the microbioma using multiple polymorphic regions, different types of analysis, and different approaches within each analysis.
File in questo prodotto:
File Dimensione Formato  
Gut Microbiota_maghnie_2020.pdf

accesso aperto

Descrizione: Articolo su rivista
Tipologia: Documento in Post-print
Dimensione 509.38 kB
Formato Adobe PDF
509.38 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1024775
Citazioni
  • ???jsp.display-item.citation.pmc??? 16
  • Scopus 30
  • ???jsp.display-item.citation.isi??? 24
social impact