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Aims: The purpose of this work is to find the gut microbial fingerprinting of pediatric patients 
with type 1 diabetes.

Methods: The microbiome of 31 children with type 1 diabetes at onset and of 25 healthy 
children was determined using multiple polymorphic regions of the 16S ribosomal RNA. 
We performed machine-learning analyses and metagenome functional analysis to identify 
significant taxa and their metabolic pathways content.

Results: Compared with healthy controls, patients showed a significantly higher relative 
abundance of the following most important taxa: Bacteroides stercoris, Bacteroides fragilis, 
Bacteroides intestinalis, Bifidobacterium bifidum, Gammaproteobacteria and its descendants, 
Holdemania, and Synergistetes and its descendants. On the contrary, the relative abundance 
of Bacteroides vulgatus, Deltaproteobacteria and its descendants, Parasutterella and the 
Lactobacillus, Turicibacter genera were significantly lower in patients with respect to healthy 
controls. The predicted metabolic pathway more associated with type 1 diabetes patients 
concerns “carbon metabolism,” sugar and iron metabolisms in particular. Among the clinical 
variables considered, standardized body mass index, anti-insulin autoantibodies, glycemia, 
hemoglobin A1c, Tanner stage, and age at onset emerged as most significant positively or 
negatively correlated with specific clusters of taxa.

Conclusions: The relative abundance and supervised analyses confirmed the importance of 
B stercoris in type 1 diabetes patients at onset and showed a relevant role of Synergistetes 
and its descendants in patients with respect to healthy controls. In general the robustness and 
coherence of the showed results underline the relevance of studying the microbioma using 
multiple polymorphic regions, different types of analysis, and different approaches within each 
analysis. (J Clin Endocrinol Metab 105: e3114–e3126, 2020)
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Type 1 diabetes mellitus develops in genetically sus-
ceptible individuals by means of environmental fac-

tors that trigger an autoimmune inflammatory process 
within the pancreatic islets leading to β-cell loss (1, 2). 
Up to now the causative mechanisms have not been 
completely defined, and the identification of risk factors 
represents a challenge with practical, diagnostic, and 
therapeutic implications (3-5).

The increasing incidence of diabetes among genetic-
ally stable populations, the different incidence among 
neighboring regions, and the shift to a younger age at 
diabetes clinical onset strengthen the role of environ-
mental factors in its pathogenesis (6). The main topics 
are perinatal and socioeconomic factors (7), the hygiene 
hypothesis (8), dietary components both in mother and 
in children (7), infectious agents (9), obesity and the 
“accelerator hypothesis” (10), epigenetic factors (11), 
and gut permeability (12).

Recently, it has been postulated that the gut immune 
system and gut-microbiota composition play a key 
role in human health and in the development of auto-
immunity (13). The microbial flora consists of a dynamic 
ecosystem, with 1013 to 1014 microorganisms belonging 
up to thousands different species, whose genome codes 
for a number of genes up to 150 times human genes 
(14). Gut microbiota acts as an endocrine organ that 
translates nutritional factors into hormone-like signals; 
its composition is influenced by dietary habits and geo-
graphical locations. Gut microbiota is involved in sev-
eral activities: complex carbohydrates digestion, vitamin 
synthesis, immune and inflammatory responses, and 
hormone and neurotransmitter synthesis, all influencing 
host physiology and disease susceptibility (13). In par-
ticular gut microbiota interacts with the mucosal envir-
onment, modulating intestinal permeability, local and 
systemic inflammatory activity, and cross-talking with 
the gut immune system (15). The immunological link 
between the gut and pancreas by shared lymphocyte 
homing receptors contributes to the development of dia-
betes together with gut immunological modification and 
dysbiosis (16). Moreover, the gut-brain axis and gut-
hypothalamus axis are influenced by microorganisms to 
regulate food intake and energy expenditure (13).

Studies on animal models, particularly in BB rats 
and the NOD mouse, have reported conflicting re-
sults (14, 17). An increased presence of Bacteroidetes, 
Eubacterium, and Ruminococcus in BB-diabetes prone 
rats was reported, whereas a decrease of Firmicutes 
and an increase of Bacteroides in NOD mice has been 
described (14). On the other hand, certain strains of 
Bacteroidetes, for example, Prevotella, seem to be pro-
tective against disease development (17). These different 

results might be due to design of the experimental 
model, environmental factors, storage and processing of 
stool samples, and regional variations in gut microbiota.

Animal studies translated to humans confirmed the 
involvement of gut microbiota in diabetes pathogen-
esis (18-20). Several differences in gut microbiota have 
been reported between healthy children and those with 
diabetes. Healthy children had a higher percentage 
of butyrate-producing and mucin-degrading bac-
teria, as compared to peers with diabetes, who other-
wise showed a decrease in Firmicutes/Bacteroidetes 
ratio (18) and a higher abundance of Bifidobacterium 
pseudocatenulatum, Roseburia hominis, and Alistipes 
shahii (19). Children with active β-cell autoimmunity and 
prediabetes showed an increased ratio of Bacteroidetes 
vs Firmicutes (17). Recently, a disease-specific duodenal 
mucosa characterized by a distinctive inflammatory 
profile and microbiota composition was reported (20). 
These observations support the role of the gastrointes-
tinal ecosystem in the development of autoimmunity 
(21) and target intestinal flora as a potential future new 
strategy for diabetes prevention and treatment (22, 23).

The primary aim of our study was to define gut-
microbiota composition in a cohort of newly diagnosed 
children and adolescents with type 1 diabetes. Our sec-
ondary aim was to analyze specific bacteria taxa with 
clinical and metabolic parameters of the disease.

Methods

We evaluated 31 children and adolescents (20 males, 11 
females) with newly diagnosed type 1 diabetes (mean age, 
10.3  years with an SD of 4.1, median 9.5  years) between 
January 1, 2016 and May 31, 2018. All patients were admitted 
to the emergency section of the hospital and then sent to the 
in-ward section of the Pediatric Clinic, the Regional Center 
for Pediatric Diabetes, Giannina Gaslini Institute, Genoa. No 
patient needed admission to the intensive care unit. Clinical 
characteristics are reported in Table 1. In particular mean glu-
cose levels at first detection were 462 ± 215 mg/dL (M ± SD), 
mean hemoglobin  A1c (HbA1c) levels were 10.75  ±  1.92% 
(94.00  ±  21.09  mmol/mol), mean C peptide levels were 
0.48 ± 0.33 ng/mL. Mean serum pH values were 7.31 ± 0.13. 
Inclusion criteria were individuals living in Northern Italy, 
born from Caucasian parents, singleton birth, diagnosis of type 
1 diabetes according to International Society for Pediatric and 
Adolescent Diabetes guidelines (23), personal history negative 
for acute or chronic gastrointestinal diseases, and/or antibiotic 
or probiotics administration in the previous month. Exclusion 
criteria were forms other than type 1 diabetes, coexistence or 
concomitant diagnosis of celiac disease, personal history posi-
tive for gastrointestinal acute and chronic illnesses, and anti-
biotics or probiotics administration in the previous month. 
Data regarding sex, age at diabetes onset, presence of keto-
acidosis, gestational age, mode of delivery, duration of breast-
feeding, and age at weaning were also recorded. Screening for 
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the most frequent autoimmune diseases associated with type 
1 diabetes (ie, celiac and thyroid diseases) was performed in 
all patients.

As expression of endogenous insulin secretion serum C 
peptide measurement by electrochemiluminescence assay was 
performed in all patients. Reference values were 1 to 3 ng/mL.

Immunological markers of type 1 diabetes were de-
tected in all patients. Glutamic acid decarboxylase (GADA), 
antithyrosine phosphatase (IA2A), and anti-Zn transporter 
protein 8 (ZnT8) autoantibodies were detected by enzyme-
linked immunosorbent assay, and anti-insulin autoantibodies 
(IAAs) by radioimmunoassay.

As controls, 25 sex-matched healthy donors (HDs) (age 
10.3 ± 4.1 years, median 10.0 years) were analyzed using the 
same approach. Informed consent was obtained by patients 
and caregivers, and the study was approved by the local ethics 
committee.

Fecal microbioma analysis
Fecal samples were collected from HDs and from newly 

diagnosed patients within 1 week after recovery from meta-
bolic decompensation, if present, and during multi-injective 
daily insulin therapy. All patients were in good clinical con-
ditions at the time of collection and showed near-normal 
blood glucose levels. Stool samples were transferred on 
collection at –20 C and stored in the same conditions until 
DNA extraction. DNA extraction from fecal samples was 
performed resuspending a tiny quantity of feces into 1 mL 
of the ASL Stool lysis buffer (Qiagen GmbH) by vigorous 
pipetting. DNA was extracted from 200  μL of this suspen-
sion with a MagDEA DNA 200GC extraction kit and PSS 
Magtration System 12GC automated platform, according to 
the manufacturer’s instructions (Precision System Science PSS 
Co, Ltd). DNA was eluted into 100 μL of 10 mM Tris pH 
8.0/1 mM EDTA (TE) buffer, and quality and quantity were 
evaluated by spectrophotometric and Qubit fluorimetric 
quantitation assays, respectively (Thermo Fisher Scientific). 
A total of 3 ng of DNA were used for each 16S amplifica-
tion reaction performed with an Ion 16S Metagenomics Kit 
(Thermo Fisher Scientific). It allowed the polymerase chain 
reaction amplification of 7 out of 9 informative 16S poly-
morphic regions (V2, V4, V8, V3, V6-7, and V9) according 
to the manufacturer’s protocols.

The IonPlus-Library kit for AB library builder (Thermo 
Fisher Scientific) was used for library synthesis. Differently 
bar-coded libraries were automatically handled into a Ion 520 
chip by the Ion Chef System and sequenced by GeneStudio 
S5 system (Thermo Fisher Scientific). Data analysis was per-
formed with Ion Reporter suite software (v 5.10) using both 
the curated Greengenes (v13.5) and the premium curated 
MicroSEQ ID 16S ribosomal RNA reference library (v2013.1) 
databases with standard parameters. In detail, the analysis 
was performed using 2 machine-learning algorithms (Random 
Forest and Elastic Net l1l2), together with complete compos-
itional and biodiversity α and β index analyses. In addition, 
comparative analysis and predictions of metabolic potentials 
were studied. In detail, comparative analysis used multiple 
data filtering and normalization techniques coupled with dif-
ferential analysis algorithms like linear discriminant analysis 
(LDA) effect size (LEfSe), metagenomeSeq (based on zero-
inflated Gaussian fit or Fitfeature statistical models), EdgeR, 
and DEseq2. All statistical analyses were performed using 

P values of less than .05 adjusted using the false discovery rate 
method, and all parameters were always analyzed at phylum, 
class, order, family, genus, and species levels.

Bioinformatics and statistics
Statistical, visual, and meta-analyses of microbiome data 

were performed with the MicrobiomeAnalyst tool (24). Data 
filtering for low abundance and low variance operational 
taxonomic units (OTUs, based on the prevalence in 20% 
of samples and interquartile range set at 10%) was applied 
for all relative abundance comparisons using the algorithms 
metagenomeSeq, EdgeR, DESeq2, linear discriminant analysis 
(LDA), and effect size-LEfSe.

Finally, 2 different machine-learning algorithms, Random 
Forest (24) and l1l2 (25), for biomarker classification and iden-
tification were applied.

Data preprocessing
The R package microbiomeSeq (available at http://

userweb.eng.gla.ac.uk/umer.ijaz/projects/microbiomeSeq_
Tutorial.html#content) was used to normalize separately the 
phylum, class, order, family, genus, and species data matrices. 
This package is suggested in a recent paper that is focused on 
normalization methods for microbioma data (26). For both 
l1l2 and Random Forest, we analyzed separately phylum, class, 
order, family, genus, and species, whose numerosity for the 
56 samples was 12, 25, 53, 106, 139, 318, respectively.

Supervised analysis: l1l2
For multivariate variable selection, we chose l1l2, an em-

bedded regularization method that combines 2 penalty terms, 
1 enhancing sparcity (l1 norm) and the other retaining correl-
ated variables (l2 norm). The algorithm can be tuned to give sets 
of discriminative variables of different sizes (25). In particular 
this method was used inside PALLADIO, a machine-learning 
framework based on regularization methods. It provides an es-
timate of its reliability by means of a nonparametric, 2-sample 
Kolmogorov-Smirnov test, along with an assessment of pre-
diction performance.

Unsupervised analysis: weighted correlation 
network analysis

To verify if the abundance of particular groups of taxa was 
significantly associated to relevant clinical features character-
izing diabetic patients, we performed a multivariate analysis 
using weighted correlation network analysis (WGCNA) clus-
tering methodology (27). The R package implementation of 
this method was used (28). In particular we leveraged on the 
selections of classes, orders, families, genus, and species iden-
tified by l1l2 and considered the following clinical features: 
sex, age at onset, glycemia, glycated HbA1c, and C  peptide 
levels, Tanner stage, BMI-SDS, GADA IA2A, ZnT8, and IAA 
positivity, type of delivery (natural or cesarean) and timing of 
gluten introduction.

Inferring functional (metabolic) pathways 
using PICRUSt

The metagenome functional content was predicted using 
PICRUSt (29) from biom files, thus we obtained the KEGG 
orthology (KO) terms table. These data were analyzed with 
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MicrobiomeAnalyst to identify a list of the most significant 
KO able to discriminate patients from controls.

Results

Microbiome analysis
The study of the fecal microbiota was performed 

using next-generation sequencing, enabling the analysis 
of the complete bacterial contents of the samples. It is 
known that the hypervariable regions of the 16S ribo-
somal gene exhibit different degrees of sequence diver-
sity, allowing us to assign the microbial taxonomy of 
mixed bacterial populations. It is also true that the ana-
lysis of a single hypervariable region is not able to distin-
guish among all bacteria. In our approach we used the 
sequencing of 7 polymorphic regions to avoid as much 
as possible potential false-negative taxonomic classifica-
tions and any bias in the identification of microorgan-
isms in a complex microbial population.

The 63 analyzed microbiome samples resulted in 
the identification of 1606 OTUs in patients and 1552 
OTUs in HDs. A comparative abundance profile across 
experimental groups at the phylum, family, and genus 
taxonomic levels are  shown in   our supplemental 
materials (30).

α and β Diversity analysis
To allow comparison of patients and HDs, these ana-

lysis were performed rarefying data to the minimum 
library size. The α diversity profiling indexes, which es-
timate community richness (observed_species, Chao1-
index, and abundance-based coverage estimators or 
ACEs), increased in HDs compared to patients (as in-
dicated by Mann-Whitney statistical analysis). Indeed, 
the number of observed species and the Chao1 esti-
mator increased both at the level of class, order, and 
species (P  ≤  .05), and at family and genus (P  ≤  .01), 
whereas ACEs reached statistical significance only at 
the family, genus (P ≤ .01), and species (P ≤ .05) levels 
(data not shown). The use of indexes estimating com-
munity richness and evenness (Shannon, Simpson, and 
Fisher) gave more variegated results. The Shannon and 
the Simpson indexes both showed no significant differ-
ences with the exception of the Shannon index evalu-
ated at the phylum level (P ≤ .05). The Fisher diversity 
index showed a statistically significant increasing trend 
in patient samples at the phylum, class, order (P ≤ .05), 
family, genus (P  ≤  .01), and species (P  ≤  .05) levels 
(data not shown).

The β diversity (unweighted UniFrac and Bray-Curtis 
index) was performed by principal coordinate analysis 
as the ordination method and was statistically analyzed 
with a permutational multivariate analysis of variance 

test. In detail, unweighted UniFrac allowed for the pres-
ence or absence of different taxa (P  <  .044), whereas 
the Bray-Curtis index gave information about the abun-
dance of data (P < .008) (30). Finally, α and β diversity 
analyses showed a more complex organization of the 
gut-bacterial flora in patients.

Taxonomy-based differential abundance analysis
The differential abundance of taxa among samples 

belonging to either HDs or newly diagnosed type 1 
diabetes patients was evaluated with different algo-
rithms (metagenomeSeq, EdgeR, DESeq2, LDA, and 
LEfSe). All P values shown have been adjusted using 
the false discovery rate approach and are indicated 
as “q=.”

Different Bacteroidetes species like B  stercoris 
(q = 1.473E-4), B intestinalis (q = 0.010), and B fragilis 
(q  =  0.0452) were statistically significant in patients 
compared to HDs (Table 2).

We observed a higher relative abundance of 
Synergistetes (q  =  0.001), Synergistia (q  =  4.798E-
5), Synergistales (q  =  2.64E-4), and Synergistaceae 
(q = 0.0017) in patients than in the HD group (Table 2). 
Patients showed the previously cited taxa about 20 
times more than HDs, as indicated by log2 fold changes.

Among Proteobacteria the class Gammaproteo
bacteria was more abundant in patients than 
in HDs (q  =  0.0226) as well as its descendant 
order Enterobacteriales (q  =  0.0226) and family 
Enterobacteriaceae (q  =  0.0379), which showed 
a 3-times higher abundance in patients. In con-
trast, the class Deltaproteobacteria (q  =  0.002) 
and Betaproteobacteria (q  =  0.031) were around 3 
times less abundant in patient samples than in HDs 
(Table 2). Among Deltaproteobacteria descendants, the 
Desulfovibrionales (q  =  0.0016), Desulfovibrionaceae 
(q = 0.016), and Bilophila genera (q = 0.036) showed 
lower relative abundance in patients as compared 
to HDs (0.30, 0.33, or 0.22, respectively). Within 
Betaproteobacteria descendants, Parasutterella 
(q  =  0.018) and Sutterella (q  =  0.0013) showed the 
opposite behavior, their abundance in patients vs HD 
being 0.13 and 7.67, respectively.

Oscillospiraceae (q  =  0.027) and unclassified 
Clostridiales, both descendants of Firmicutes, showed 
a 3- and 10-fold relative abundance increase in pa-
tients over HDs, respectively. Eubacterium hallii and 
Eubacterium siraeum behaved the opposite way, with 
the relative abundance in patients compared to HD for 
the former was 0.16 and for the latter 8.86, respect-
ively. Finally, Bifidobacterium bifidum, a descendant of 
Actinobacteria, was 8 times more abundant in patients 
than in HDs (q = 0.0169).
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Supervised analysis
We applied Random Forest and l1l2 algorithms to 

identify taxable to discriminate between patients and 
HD with good classification performances. We ana-
lyzed separately phylum, class, order, family, genus, and 
species considering both machine-learning methods. 
Interestingly, both methods produced overlapping re-
sults (Figure 1). Among the identified species, B stercoris 
was the most significant and robust species found both 
by Random Forest and l1l2, with a higher abundance 
in patients than in HDs, as shown in Fig. 1. B vulgatus 
was another species classified with the highest scores 

by both methods. Interestingly, although both spe-
cies are descendants of the Bacteroidetes phylum, the 
B vulgatus behaved in the opposite way if compared to 
B stercoris (Fig. 1), since the B vulgatus relative abun-
dance was higher in HDs, as already reported (31). 
Again, Synergistetes, Synergistia, Synergistales, and 
Synergistaceae were all identified among the features 
best describing patient samples. These bacteria are sug-
gested to be opportunistic pathogens because they are 
known to be implicated in periodontal disease, gastro-
intestinal infections, and soft-tissue infections but they 
can also be found in HDs (Fig. 1).

Table 2. Relative abundance analysis obtained with 4 different algorithms in newly diagnosed patients 
with type 1 diabetes

Taxa
Zero-inflated 
Gaussian fit EdgeR EdgeR DESeq2 DESeq2 LDA-LEfSe

LDA-
LEfSe

Actinobacteria FDR q log2FC FDR q log2FC FDR q LDA score FDR q
Bifidobacterium bifidum 0.0473 2.9550 0.0169 – – – –
Bacteroidetes FDR q log2FC FDR q log2FC FDR q LDA score FDR q
Bacteroides stercoris 1.4730E-4 – – – – – –
Bacteroides intestinalis 0.0102 – – – – – –
Bacteroides fragilis – 2.8052 0.0452 – – – –
Prevotella 0.0125 – – – – – –
Prevotella copri 0.0133 – – – – – –
Alistipes 0.0447 – – – – – –
Alistipes indistinctus 0.0331 – – – – – –
Firmicutes FDR q log2FC FDR q log2FC FDR q LDA score FDR q
Bacillales 0.0255 – – – – – –
Lactobacillus 0.0332 –2.9873 0.0044 – – – –
Holdemania 0.0093 – – – – – –
Holdemania filiformis 0.0331 – – – – – –
Turicibacter 0.0050 – – – – – –
Turicibacter sanguinis 0.0497 – – – – – –
Coprococcus catus 0.0331 – – – – – –
Oscillospiraceae 0.0271 – – – – 2.86 0.0198
Pseudoflavonifractor 0.0125 – – – – – –
Unclassified Clostridiales – 3.4351 0.0014 – – – –
Eubacterium hallii – –2.6969 9.5187E-4 – – – –
Eubacterium siraeum – 3.1480 0.0299 – – – –
Proteobacteria FDR q log2FC FDR q log2FC FDR q LDA score FDR q
Gammaproteobacteria – 1.3140 0.0226 1.7177 0.0026 – –
Enterobacteriales – – – 1.6479 0.0226 – –
Enterobacteriaceae – – – 1.6692 0.0379 – –
Betaproteobacteria – –1.4771 0.0312 – – – –
Parasutterella 0.0177 –2.9632 0.0318 – – – –
Parasutterella 

excrementihominis
0.0331 – – – – – –

Sutterella 0.0013 2.9407 0.0452 – – – –
Deltaproteobacteria – –1.5005 0.0018 – – – –
Desulfovibrionales – –1.7498 0.0016 –1.1091 0.0377 – –
Desulfovibrionaceae – –1.6110 0.0162 –1.3542 0.0379 – –
Bilophila – –2.1806 0.0356 – – – –
Synergistetes FDR q log2FC FDR q log2FC FDR q LDA score FDR q
Synergistetes 0.0014 4.3392 5.0399E-5 4.4556 0.0427 2.59 0.0050
Synergistia 4.7975E-5 4.6856 4.7975E-5 4.6863 0.0272 2.59 0.0101
Synergistales 2.6399E-4 4.4596 7.1403E-5 4.5482 0.0377 2.59 0.0126
Synergistaceae 0.0017 4.2063 1.8713E-4 – – 2.59 0.0198
Verrucomicrobia FDR q log2FC FDR q log2FC FDR q LDA score FDR q
Verrucomicrobiales 0.0200 – – – – – –
Akkermansia muciniphila 0.0497 – – – – – –

Abbreviations: FC, fold change; FDR, false discovery rate; LDA, linear discriminant analysis; LEfSe, linear discriminant analysis effect size.
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The Proteobacteria and their descendants 
Gammaproteobacteria, Enterobacteriales, and 
Enterobacteriace were among the features best identified 
by both algorithms. The same was true for Bilophila and 

B wadsworthia, both descendants of Deltaproteobacteria 
(Fig. 1). Sphingobacteriia and Erysipelotrichia had rele-
vant scores with only 1 of the 2 algorithms used (l1l2 or 
Random Forest). Sphingobacteriia is known to produce 

Phylum Frequency 
1) Synergistetes 98%
2) Actinobacteria 84%
3) Proteobacteria 69%
4) Firmicutes 64%

Class Frequency 

1) Synergistia 100%
2) Gammaproteobacteria 100%
3) Sphingobacteria 95%
4) Mollicutes 94%
5) Fusobacteria 93%
6) Flavobacteria 92%
7) Cytophagia 88%
8) Nostocophycideae 88%
9) Verrucomicrobiae 82%
10) Spirochaetia 79%
11) Synechococcophycideae 79%
12) Actinobacteria 78%

Order Frequency 

1) Synergistales 97%
2) Enterobacteriales 97%
3) Fusobacteriales 95%
4) Bdellovibrionales 90%
5) Nostocales 89%
6) Acholeplasmatales 87%
7) Sphingobacteriales 86%
8) Pasteurellales 86%
9) Spirochaetales 83%
10) Thiotrichales 82%
11) Rhodobacteriales 81%
12) Halanaerobiales 81%
13) Chromatiales 81%
14) Unclass. Gammaproteobacteria 80%
15) Actinomycetales 80%

Family Frequency 

1) Synergistaceae 97%
2) Oscillospiraceae 91%
3) Enterobacteriaceae 85%
4) Bifidobacteriaceae 82%
5) Catabacteriaceae 73%
6) Comamonadaceae 72%
7) Prevotellaceae 70%
8) Acidaminococcaceae 68%
9) Veillonellaceae 67%
10) Pasteurellaceae 64%

Genus Frequency 

1) Holdemania 97%
2) Sutterella 94%
3) Dialister 93%
4) Herbaspirillum 90%
5) Flavonifractor 90%
6) Bifidobacterium 90%
7) Bilophila 90%
8) Klebsiella 88%
9) Coprococcus 88%
10) Coprobacter 88%
11) Parasutterella 86%

Specie 
Frequency 

1) Bacteroides stercoris 100%
2) Bacteroides vulgatus 95%
3) Bacteroides finegoldii 95%
4) Bifidobacterium adolescentis 93%
5) Bifidobacterium bifidum 92%
6) Bacteroides faecis 92%
7) Eubacterium hallii 91%
8) Alistipes sp. 91%
9) Roseburia inulinivorans 90%
10) Bacteroides caccae 88%
11) Dialister invisus 87%
12) Clostridium bartlettii 86%
13) Bilophila wadsworthia 86%
14) Parabacteroides merdae 86%
15) Sutterella stercoricanis 85%

l 1l 2 Random Forest
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Figure 1. Classification of microbial taxonomy using 2 different machine-learning algorithms. At left are shown the features that are relevant at the different 
taxonomic levels using the l1l2 algorithm. They are classified so the best have the highest percentage (mean balanced accuracy and Matthew correlation 
coefficient: 0.578, 0.166). Bold and gray-filled taxonomic features are the ones present in the Random Forest classification. At right we show the results of 
Random Forest based on 5000 decision trees, with the most important variables in the model being highest in the plot and having the largest mean decrease 
accuracy (mean value of out of bucket error, sensitivity and specificity of 0.408, 0.54, 0.62). The plots indicate only relevant variables. The white- or black-filled 
boxes on the part of the diagrams indicate the high or low relative abundances both in patients at onset and healthy donor individuals.
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sphingolipids, which recently have been shown to be im-
portant mediators in the signaling cascades involved in 
stress responses and inflammation (32). Erysipelotrichia 
and its descendants Holdemania and Turicibacter 
genera were among the differentially abundant features 
reported in Table  2. Oscillospiraceae, Actinobacteria, 
and its Bifidobacterium descendant genus have a higher 
abundance in patients than in HDs (Fig. 1).

Microbiome-associated metabolic pathways 
analysis

Members of certain taxonomic groups share meta-
bolic pathways and produce metabolites that may be 
associated or participate in mechanisms triggering 
pathologies. By the gene content of the microbiota, 

we obtained functional profiling (metabolic path-
ways) that characterize these microorganisms (29). 
Patients showed a group of 2696 KO identifiers based 
on molecular functions sorted according to LDA score 
(P  ≤  .05) (30, see Table  1). Fig.  2 shows the best 20 
KO-identifiers both for patients and HDs based on their 
LDA score. In diabetic individuals we had 712 “meta-
bolic pathways,” 107 of them associated with “carbon 
metabolism” and in particular with glucose metabolism. 
In detail, these pathways in the following order were 
linked to glycolysis and gluconeogenesis, fructose and 
mannose metabolism, starch and sucrose metabolism, 
pentose phosphate pathway and galactose metabolism 
(45, 42, 39, 27, and 25 pathways, respectively). It is of 
note that among the best KO identifiers we found some 
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Inferred pathways by PICRUSt
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Figure 2. The best 20 KO (Kegg orthology) identifiers both for diabetics (on top) and healthy donors (Characterized by negative LDA Scores). 
The analysis was based on linear discriminant analysis (LDA) score and P less than or equal to .05. Each identifier is indicated on the right for the 
patients group and on the left for healthy donor participants; the relative pathways, or the name of the proteins, are also shown for each entries.
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pathways were associated with the iron complex trans-
port/permease protein K02015 and iron complex outer-
membrane receptor protein transporter linked to pore 
ion-channels, K02014. Higher levels of iron in tissues 
were described as a risk factor for insulin resistance in 
type 2 diabetes (33).

Unsupervised analysis
To verify whether the abundance of particular groups 

of taxa was significantly associated with relevant clin-
ical features that characterize patients with diabetes, 
we performed a clustering analysis using the WGCNA 
method (see “Methods”).

In particular we leveraged the selections of classes, 
orders, families, genera, and species and all-taxa identi-
fied by l1l2, and we considered the list of clinical features 
specified in “Methods.”

Table 3 shows that among the clinical features con-
sidered, age at onset, sex, Tanner pubertal stage, BMI 
SDS, glycemia, glycated HbA1c, and IAA levels and type 
of delivery were significantly positively or negatively re-
lated to the abundance of specific clusters of taxa.

It is of note that in the unsupervised analysis, IAA 
positivity and BMI SDS were the clinical variables with 
the highest number of significantly correlated taxa. 
IAA presence showed the major numbers of correl-
ation with clusters of taxa among the autoantibodies. 
In detail, a negative correlation with Flavobacteriia, 
Actinobacteria, Gammaproteobacteria, Synergistia, 
Synergistales, Enterobacteriales, Oscillispiraceae, 
Synergistaceae, Enterobacteriaceae, Catabacteriaceae 
Bifidobacteriaceae, and Clostridium bartletti was ob-
served both in relative abundance and supervised ana-
lyses (see Table  2 and Fig.  1). Again, BMI SDS was 
negatively correlated with Flavobacteriia, Synergistia, 
Actinobacteria, Gammaproteobacteria, Synergistales, 
Catabacteriaceae, and Oscillospiraceae, and posi-
tively correlated with Bifidobacterium adolescentis and 
Bifidobacterium bifidum (Pearson correlation coeffi-
cient [PCC] = 0.43 and P value =  .02). The Bilophila, 
Sutterella, Flavonifractor, and Holdemania genera and 
the Bilophila wadsworthia and Sutterella stercoricanis 
species showed a negative correlation with HbA1c levels 
(PCC = –0.48 and P value = .006) and were significant 
in the supervised analysis (see Fig  1). The Bilophila, 
Sutterella, and Holdemania (with the exception of 
Flavonifractor genus) were relevant in the relative abun-
dance analysis. Whereas for Bilophila and Sutterella 
the relative abundance analysis reached a statistical 
significance level at the genus level, only the supervised 
and the unsupervised methods were able to reach stat-
istical significance at the species level (B wadsworthia 

and S stercoricanis) with the Tanner scale (PCC = –0.44 
and P  value =  .01). In addition, Clostridium bartlettii 
and Bacteroides finegoldii were statistically significant 
both in the supervised and the unsupervised methods. 
It is remarkable that B wadsworthia and S stercoricanis 
clustered together and were negatively correlated with 
age at diabetes onset (PCC = –0.45 and P value = .01). 
Differently from the relative abundance analysis, both 
l1l2 and WGCNA found Klebsiella and Coprobacter 
genera being statistically significant, in the former to 
discriminate between patients and HDs, and in the latter 
to strongly correlate with glycemia (PCC  =  0.58 and 
P value = 7E-04) in a positive direction, while both of 
them correlated negatively with age at onset. Moreover, 
analyzing all taxa selected by the l1l2 algorithm (ie, all-
taxa comprising phylum, class, order, family, genus, and 
species together) we found a strikingly positive correl-
ation between blood pH at diabetes diagnosis and the 
cluster Herbaspirillum, Coprococcus, Coprobacter, 
Eubacterium hallii, Bacteroides faecis, Bacteroides 
stercoris, Bacteroides vulgatus, and Parabacteroides 
merdae, Actinobacteria, and its descendants 
(Bifidobacteriaceae and Bifidobacterium) (PCC = 0.57 
and P  value  =  9E-04), and a significant negative cor-
relation between HbA1c levels and the cluster Bilophila 
and B wadsworthia (PCC = –0.5, P-value = .004) (data 
not shown).

Discussion

In our study we observed a significant shift in the micro-
biota composition in newly diagnosed children and ado-
lescents with type 1 diabetes. We used metagenomics to 
study gut microbiota in patients with type 1 diabetes at 
clinical onset compared to fecal microbial flora in HDs.

Our data showed that controls had higher α diver-
sity than cases. Others like Cinek did not find any dif-
ferences, whereas Kostic found a “drop” in case alpha 
diversity between seroconversion and type 1 diabetes 
diagnosis (34, 35). Kemppainen showed that bacterial 
diversity differed by geographical location and the 
Shannon index differed significantly at each site (36). In 
addition, our analysis takes into consideration 7 poly-
morphic regions of the 16S gene, whereas the majority 
of published articles used a single or 2 different regions 
instead. Different approaches used might be reflected in 
α diversity evaluation. Thus, it is possible that different 
conditions, either biological and/or technical, may influ-
ence the α diversity of cases rather than controls, such 
as time of seroconversion and diagnosis.

Although Bacteroidetes do not represent the major 
phylum in patients (37), Bacteroides genus and even 
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different descendant species (B stercoris, B intestinalis, 
B cellulosilyticus, and B. fragilis) are among the taxo-
nomic features more abundant in patients. On the 
contrary, B  vulgatus showed a higher relative abun-
dance in HD  subjects. In addition, we found higher 
relative abundance of the class Gammaproteobacteria 
and the order Enterobacteriales in patients. This might 
be responsible for intestinal permeability increase (37, 
38) and inflammation state; the same microorgan-
isms might impair fasting glucose control in type 2 
diabetes patients (39). Interestingly, B  stercoris was 
one of the more relevant species observed using 2 
machine-learning algorithms (Random Forest and 
l1l2 Elastic Net). A recent report showed that human 
leukocyte antigen (HLA)-A2–restricted CD8+ T cells 
autoreactive for pancreatic islets (recognizing the 
zinc-transporter 8186-194) were increased in the pan-
creas of patients.

CD8+ lymphocytes are activated when short pep-
tide (8-10 amino acids) are presented at the surface 
of antigen presenting cells (APCs) in the context of 
HLA class  I  molecules. The peptide-HLA complex 
is recognized by the T-cell receptor. Rarely, epitope 
cross-reactivity, or lack of fine specificity, happens 
because of cross-conservation of T-cell epitopes be-
tween pathogens and autoantigens, as suggested by 
several examples in multiple sclerosis, Guillain-Barré 
syndrome, and other pathologies, but at present it is 
still unclear whether the composition of the intestinal 
microbiota affects local APC function (40). Recently, 
ZnT8186-194–reactive CD8+ T cells, preferentially en-
riched in the pancreas, but not in the blood, of type 1 
diabetes donors, were shown to cross-prime an unre-
lated homologous epitopes (mimotope) of B stercoris 
(41). It is intriguing that these lymphocytes showed 
cross-reactivity with an epitope from the commensal 
B  stercoris strain, a species that we found with 
higher relative abundance in patients 40-42). As re-
ported, CD8+ T-cell clones displaying the B  stercoris 
mimotope had a stronger agonist effect than the na-
tive ZnT8186-194 peptide, thus indicating that they can 
cross-recognize a bacterial mimotope (41). Our find-
ings, together with the presence of bacterial species re-
sponsible for an increase of intestinal permeability (see 
previously), suggest a role for epitope redundancy that 
might also cause immune response activation and con-
tribute to the development of type 1 diabetes mellitus. 
On the other hand, in our case series, no significant 
association between ZnT8 autoantibody positivity and 
specific microbiota assessment was found. Regardless, 
these data are not surprising because we evaluated 
only serum autoantibodies produced by B  lympho-
cytes, whereas Culina et al analyzed CD8+ cytotoxic 

T cells specific for ZnT8186-194 peptide that resulted in 
homing into the pancreas (41).

Among Firmicutes, Holdemania and H filiformis were 
reported as an indicator of impaired lipids and glucose 
metabolism (39). Turicibacter and T sanguinis produce 
lactate, a key regulator of metabolism that has been as-
sociated with chronic metabolic diseases and shown to 
identify in type 2 obese and diabetic mice models (43). 
Interestingly, in our diabetes patients we found a higher 
relative abundance of H filiformis and, on the contrary, 
a lower abundance of T  sanguinis that correlate with 
impaired metabolic glucose disorders (data not shown).

On the contrary, the genus Parasutterella, belonging 
to the Betaproteobacteria phylum, negatively correlated 
with patients (P = .004); among them the P excrementi 
hominis species reached statistical significance (P = .03). 
It has been reported that a high-fat diet regimen was 
associated with a reduction of Parasutterella and 
P  excrementihominis (44). Lactobacillus genus and 
Eubacterium hallii (both belonging to Firmicutes) 
showed a decrease of relative abundances in patients 
compared to HDs. The presence of Lactobacillus has 
been shown to attenuate fasting blood glucose, post-
prandial blood glucose, glucose intolerance, and insulin 
resistance in type 2 diabetes, thus the decrease of abun-
dance of this genus in patients at onset may indicate a 
more general protective role for this genus (44, 45).

It is well known that diabetic patients are at higher 
risk of developing periodontal diseases than controls 
(46). Synergistetes were isolated from subgingival 
plaque in periodontitis, in root canals from patients suf-
fering endodontic infections, and in cases of dental caries 
(47). In our report we found the phylum Synergistetes, 
class Synergistia, order Synergistales, and family 
Synergistaceae all showed a statistically significant 
higher relative abundance in patients (around 20 times 
more) compared to HDs. The supervised results also con-
firmed the importance of this microorganism in defining 
the patient group. Furthermore, in some patients we de-
fined at the species level the microorganisms belonging 
to Synergistaceae family and precisely Pyramidobacter 
piscolens (reads identified in the polymorphic regions 
V2, V3, V4, and V8), Cloacibacillus porcorum (V2, V3, 
V4, V6-7, and V8), and Cloacibacillus evryensis (V8 
only), stressing the importance of using multiple 16S 
polymorphic regions for the correct identification of 
prokaryotic species. Altogether, these data demonstrate 
the presence of orally derived periodontopathic micro-
organisms in the fecal microbiota, thus linking peri-
odontitis and systemic disease (48).

Our analysis showed that different pathways associ-
ated with glucose metabolism and iron complex levels 
are impaired in patients with newly diagnosed type 1 
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diabetes. In addition, histidine metabolism and insulin 
signaling pathways appear in the list of those associ-
ated with patients as well as in a list associated with 
type 1 diabetes mellitus (49). Moreover, 8 among the 
13 pathways that were associated with newly diagnosed 
patients and that had already been reported in a paper 
using a direct metaproteomics method were found in 
the list of the altered pathways observed in our pre-
dictive approach (50).

Among the clinical variables, BMI SDS and IAAs 
were the most significantly correlated across the 
highest number of phyla. In general we found signifi-
cant negative correlations among these 2 variables 
and specific levels of classification of Synergistetes 
(ie, Synergistia, Synegistaceae), Actinobacteria (ie, the 
phylum and Bifidobacteriaceae) and Proteobacteria 
(ie, Gammaproteobacteria and Enterobacteriaceae) 
phyla. The most significant correlations we found 
among others are (i) the positive correlation between 
glycemia and the cluster Klebsiella-Coprobacter, (ii) 
the negative correlation between HbA1c levels and the 
cluster Bilophila-B  wadsworthia, and (iii) the posi-
tive correlation between serum pH and the cluster 
Bifidobacteriaceae-B bifidum.

Major strengths of our study include the microbiota 
detection technique and the same clinical character-
istics and dietary habits of the enrolled patients. We 
are aware that the small sample of cases represents 
a point of weakness, but on the other hand this is a 
monocentric study with strict selection criteria. In par-
ticular, we evaluated only Caucasian patients with a 
detailed clinical phenotype, including similar dietary 
habits and age older than 3  years to avoid different 
food ingestion and younger age as confounding factors 
for microbiota composition.

At present it is not possible to clearly state whether 
gut-microbiota diversity represents a cause or a conse-
quence of autoimmunity in type 1 diabetes.

Further longitudinal studies and increased number of 
cases will help in obtaining a better knowledge of the 
role of gut microbiota and autoimmunity and to con-
sider gut-microbiota modulation as a future therapeutic 
opportunity.
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