Given a real number τ, we study the approximation of τ by signed harmonic sums σN(τ):=∑n≤Nsn(τ)/n, where the sequence of signs (sN(τ))N∈N is defined “greedily” by setting sN+1(τ):=+1 if σN(τ)≤τ, and sN+1(τ):=−1 otherwise. More precisely, we compute the limit points and the decay rate of the sequence (σN(τ)−τ)N∈N. Moreover, we give an accurate description of the behavior of the sequence of signs (sN(τ))N∈N, highlighting a surprising connection with the Thue–Morse sequence.

Greedy approximations by signed harmonic sums and the Thue–Morse sequence

Bettin S.;
2020-01-01

Abstract

Given a real number τ, we study the approximation of τ by signed harmonic sums σN(τ):=∑n≤Nsn(τ)/n, where the sequence of signs (sN(τ))N∈N is defined “greedily” by setting sN+1(τ):=+1 if σN(τ)≤τ, and sN+1(τ):=−1 otherwise. More precisely, we compute the limit points and the decay rate of the sequence (σN(τ)−τ)N∈N. Moreover, we give an accurate description of the behavior of the sequence of signs (sN(τ))N∈N, highlighting a surprising connection with the Thue–Morse sequence.
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0001870820300943-main.pdf

accesso chiuso

Tipologia: Documento in versione editoriale
Dimensione 1.61 MB
Formato Adobe PDF
1.61 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1011900
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 3
social impact