Bone is a hot topic for researchers, interested in understanding the structure-related properties of the tissue and the effect of aging, disease and therapies on that. A thorough understanding of the mechanical behavior of bone can be helpful to medical doctors to predict the fracture risk, but it can also serve as a guideline for engineers for the design of de novo biomimetic materials. In this paper, we show a complete characterization of cortical bone under static loading (i.e. tensile, compressive, three-point bending) and we carried out tests in presence of a crack to determine the fracture toughness. We performed all the tests on wet samples of cortical bone, taken from bovine femurs, by following the ASTM standards designed for metals and plastics. We also performed microscopic observations, to get an insight into the structure-property relationship. We noted that the mechanical response of bone is strictly related to the microstructure, which varies depending on the anatomical position. This confirms that the structure of bone is optimized, by nature, to withstand the different types of loads generally occurring in different body areas. The same approach could be followed for a proper biomimetic design of new composites.

Understanding the structure-property relationship in cortical bone to design a biomimetic composite

Libonati Flavia;
2016-01-01

Abstract

Bone is a hot topic for researchers, interested in understanding the structure-related properties of the tissue and the effect of aging, disease and therapies on that. A thorough understanding of the mechanical behavior of bone can be helpful to medical doctors to predict the fracture risk, but it can also serve as a guideline for engineers for the design of de novo biomimetic materials. In this paper, we show a complete characterization of cortical bone under static loading (i.e. tensile, compressive, three-point bending) and we carried out tests in presence of a crack to determine the fracture toughness. We performed all the tests on wet samples of cortical bone, taken from bovine femurs, by following the ASTM standards designed for metals and plastics. We also performed microscopic observations, to get an insight into the structure-property relationship. We noted that the mechanical response of bone is strictly related to the microstructure, which varies depending on the anatomical position. This confirms that the structure of bone is optimized, by nature, to withstand the different types of loads generally occurring in different body areas. The same approach could be followed for a proper biomimetic design of new composites.
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0263822315010806-main.pdf

accesso chiuso

Tipologia: Documento in versione editoriale
Dimensione 2.47 MB
Formato Adobe PDF
2.47 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1010749
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 51
  • ???jsp.display-item.citation.isi??? 46
social impact