We present a novel 4-DOF (degrees of freedom) parallel robot designed for five-axis micromachining applications. Two of its five telescoping legs operate simultaneously, thus acting as an extensible parallelogram linkage, and in conjunction with two other legs control the position of the tooltip. The fifth leg controls the tilt of the end-effector (a spindle), while a turntable fixed at the base of the robot controls the swivel of the workpiece. The robot is capable of tilting its end-effector up to 90 deg, for any tooltip position. In this paper, we study the mobility of the new parallel kinematic machine (PKM), describe its inverse and direct kinematic models, then study its singularities, and analyze its workspace. Finally, we propose a potential mechanical design for this PKM utilizing telescopic actuators as well as the procedure for optimizing it. In addition, we discuss the possibility of using constant-length legs and base-mounted linear actuators in order to increase the volume of the workspace.

A New 4-DOF fully parallel robot with decoupled rotation for five-axis micromachining applications

Zlatanov D.
2019-01-01

Abstract

We present a novel 4-DOF (degrees of freedom) parallel robot designed for five-axis micromachining applications. Two of its five telescoping legs operate simultaneously, thus acting as an extensible parallelogram linkage, and in conjunction with two other legs control the position of the tooltip. The fifth leg controls the tilt of the end-effector (a spindle), while a turntable fixed at the base of the robot controls the swivel of the workpiece. The robot is capable of tilting its end-effector up to 90 deg, for any tooltip position. In this paper, we study the mobility of the new parallel kinematic machine (PKM), describe its inverse and direct kinematic models, then study its singularities, and analyze its workspace. Finally, we propose a potential mechanical design for this PKM utilizing telescopic actuators as well as the procedure for optimizing it. In addition, we discuss the possibility of using constant-length legs and base-mounted linear actuators in order to increase the volume of the workspace.
File in questo prodotto:
File Dimensione Formato  
2019-Zlatanov-ASME-JMR_11_3_031010-A New 4-DOF Fully Parallel.pdf

accesso chiuso

Tipologia: Documento in versione editoriale
Dimensione 684.53 kB
Formato Adobe PDF
684.53 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1002927
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 9
social impact