Background: Fibrin polymerization, following fibrinopeptides A and B (FpA, FpB) cleavage, relies on newly exposed α- and β-chains N-termini (GPR, GHR; A-, B-knobs, respectively) engaging preexistent a and b pockets in other fibrin(ogen) molecules' γ- and (B)β-chains C-terminal regions. A role for mostly disordered (A)α-chains C-terminal regions “bridging” between fibrin molecules/fibrils has been proposed. Objectives: Fibrinogen Detroit is a clinically observed mutation (AαR19 → S) with nonengaging GPS A-knobs. By analogy, a similar Bβ-chain mutation, BβR17 → S, should produce nonengaging GHS B-knobs. A homozygous “Double-Detroit” mutant (AαR19 → S, BβR17 → S; DD-FG) was developed: with A-a and B-b engagements endogenously blocked, other interactions would become apparent. Methods: DD-FG, wild-type recombinant (WT-FG), and human plasma (hp-FG) fibrinogen self-association was studied by turbidimetry coupled with fibrinopeptides release high-performance liquid chromatography (HPLC)/mass spectrometry analyses, and by light-scattering following size-exclusion chromatography (SE-HPLC). Results: In contrast to WT-FG and hp-FG, DD-FG produced no turbidity increase, irrespective of thrombin concentration. The SE-HPLC profile of concentrated DD-FG was unaffected by thrombin treatment, and light-scattering, at lower concentration, showed no intensity and hydrodynamic radius changes. Compared with hp-FG, both WT-FG and DD-FG showed no FpA cleavage difference, while ~50% FpB was not recovered. Correspondingly, SDS-PAGE/Western-blots revealed partial Bβ-chain N-terminal and Aα-chain C-terminal degradation. Nevertheless, ~70% DD-FG molecules bearing (A)αC-regions potentially able to associate were available. Higher-concentration, nearly intact hp-FG with 500-fold molar excess GPRP-NH2/GHRP-NH2 knobs-mimics experiments confirmed these no-association findings. Conclusions: (A)αC-regions interactions appear too weak to assist native fibrin polymerization, at least without knobs engagement. Their role in all stages should be carefully reconsidered.

Fibrinogen αC-regions are not directly involved in fibrin polymerization as evidenced by a “Double-Detroit” recombinant fibrinogen mutant and knobs-mimic peptides

Salis A.;Millo E.;Damonte G.;
2020-01-01

Abstract

Background: Fibrin polymerization, following fibrinopeptides A and B (FpA, FpB) cleavage, relies on newly exposed α- and β-chains N-termini (GPR, GHR; A-, B-knobs, respectively) engaging preexistent a and b pockets in other fibrin(ogen) molecules' γ- and (B)β-chains C-terminal regions. A role for mostly disordered (A)α-chains C-terminal regions “bridging” between fibrin molecules/fibrils has been proposed. Objectives: Fibrinogen Detroit is a clinically observed mutation (AαR19 → S) with nonengaging GPS A-knobs. By analogy, a similar Bβ-chain mutation, BβR17 → S, should produce nonengaging GHS B-knobs. A homozygous “Double-Detroit” mutant (AαR19 → S, BβR17 → S; DD-FG) was developed: with A-a and B-b engagements endogenously blocked, other interactions would become apparent. Methods: DD-FG, wild-type recombinant (WT-FG), and human plasma (hp-FG) fibrinogen self-association was studied by turbidimetry coupled with fibrinopeptides release high-performance liquid chromatography (HPLC)/mass spectrometry analyses, and by light-scattering following size-exclusion chromatography (SE-HPLC). Results: In contrast to WT-FG and hp-FG, DD-FG produced no turbidity increase, irrespective of thrombin concentration. The SE-HPLC profile of concentrated DD-FG was unaffected by thrombin treatment, and light-scattering, at lower concentration, showed no intensity and hydrodynamic radius changes. Compared with hp-FG, both WT-FG and DD-FG showed no FpA cleavage difference, while ~50% FpB was not recovered. Correspondingly, SDS-PAGE/Western-blots revealed partial Bβ-chain N-terminal and Aα-chain C-terminal degradation. Nevertheless, ~70% DD-FG molecules bearing (A)αC-regions potentially able to associate were available. Higher-concentration, nearly intact hp-FG with 500-fold molar excess GPRP-NH2/GHRP-NH2 knobs-mimics experiments confirmed these no-association findings. Conclusions: (A)αC-regions interactions appear too weak to assist native fibrin polymerization, at least without knobs engagement. Their role in all stages should be carefully reconsidered.
File in questo prodotto:
File Dimensione Formato  
jth.14725 (1).pdf

accesso aperto

Tipologia: Documento in Post-print
Dimensione 1.36 MB
Formato Adobe PDF
1.36 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/999349
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 12
social impact