In the present work, alginate-based mats with and without ZnO nanoparticles were prepared via an electrospinning technique and subjected to a washing-cross-linking process to obtain highly stable products characterized by thin and homogeneous nanofibers with a diameter of 100 ± 30 nm. Using a commercial collagen product as control, the biological response of the prepared mats was carefully evaluated with particular attention paid to the influence of the used cross-linking agent (Ca2+, Sr2+, or Ba2+ ions) and to the presence of nanofillers. Fibroblast and keratinocyte cultures successfully proved the safety of the prepared alginate-based mats, whereas ZnO nanoparticles were found to provide strong antibacteriostatic and antibacterial properties; above all, the strontium- and barium-cross-linked samples showed performances in terms of cell adhesion and growth very similar to those of the commercial collagen membrane despite them showing a significantly lower protein adsorption. Moreover, the mechanical and water-related properties of the strontium-cross-linked mats embedding ZnO nanoparticles were proven to be similar to those of human skin (i.e., Young modulus of 470 MPa and water vapor permeability of 3.8 × 10-12 g/m Pa s), thus proving the ability of the prepared mats to be able to endure considerable stress, maintaining at the same time the fundamental ability to remove exudates. Taking into account the obtained results, the proposed alginate-based products could lead to harmless and affordable surgical patches and wound dressing membranes with a simpler and safer production procedure than the commonly employed animal collagen-derived systems.

Alginate-Based Electrospun Membranes Containing ZnO Nanoparticles as Potential Wound Healing Patches: Biological, Mechanical, and Physicochemical Characterization

Andrea Dodero;Sonia Scarfi;Marina Pozzolini;Silvia Vicini;Marina Alloisio;Maila Castellano
2020-01-01

Abstract

In the present work, alginate-based mats with and without ZnO nanoparticles were prepared via an electrospinning technique and subjected to a washing-cross-linking process to obtain highly stable products characterized by thin and homogeneous nanofibers with a diameter of 100 ± 30 nm. Using a commercial collagen product as control, the biological response of the prepared mats was carefully evaluated with particular attention paid to the influence of the used cross-linking agent (Ca2+, Sr2+, or Ba2+ ions) and to the presence of nanofillers. Fibroblast and keratinocyte cultures successfully proved the safety of the prepared alginate-based mats, whereas ZnO nanoparticles were found to provide strong antibacteriostatic and antibacterial properties; above all, the strontium- and barium-cross-linked samples showed performances in terms of cell adhesion and growth very similar to those of the commercial collagen membrane despite them showing a significantly lower protein adsorption. Moreover, the mechanical and water-related properties of the strontium-cross-linked mats embedding ZnO nanoparticles were proven to be similar to those of human skin (i.e., Young modulus of 470 MPa and water vapor permeability of 3.8 × 10-12 g/m Pa s), thus proving the ability of the prepared mats to be able to endure considerable stress, maintaining at the same time the fundamental ability to remove exudates. Taking into account the obtained results, the proposed alginate-based products could lead to harmless and affordable surgical patches and wound dressing membranes with a simpler and safer production procedure than the commonly employed animal collagen-derived systems.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/997722
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 93
  • ???jsp.display-item.citation.isi??? 78
social impact