A 3D computational fluid dynamics model was adopted to study the effects of internal cooling on the performance of a three-fluid combined membrane contactor (3F-CMC), in the presence of minitubes in solution and a spacer in the air channel. This compact 3F-CMC is part of a hybrid climate-control system, recently developed for serving in electric vehicles. For the studied operating conditions, results show that the absorption and sensible effectiveness parameters increase up to 77% and 124% by internal cooling, respectively. This study also reports 3D flow effects on the heat and mass transfer enhancement inside the contactor, with implications for further design improvements.
3D-CFD analysis of the effect of cooling via minitubes on the performance of a three-fluid combined membrane contactor
Isetti, Carlo;Lazzari, Stefano
2019-01-01
Abstract
A 3D computational fluid dynamics model was adopted to study the effects of internal cooling on the performance of a three-fluid combined membrane contactor (3F-CMC), in the presence of minitubes in solution and a spacer in the air channel. This compact 3F-CMC is part of a hybrid climate-control system, recently developed for serving in electric vehicles. For the studied operating conditions, results show that the absorption and sensible effectiveness parameters increase up to 77% and 124% by internal cooling, respectively. This study also reports 3D flow effects on the heat and mass transfer enhancement inside the contactor, with implications for further design improvements.File | Dimensione | Formato | |
---|---|---|---|
3D-CFD analysis... - IJ Low-Carbon Technologies - 2019.pdf
accesso aperto
Descrizione: Main article
Tipologia:
Documento in versione editoriale
Dimensione
2.23 MB
Formato
Adobe PDF
|
2.23 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.