Transparent conductive oxides are a class of materials that combine high optical transparency with high electrical conductivity. This property makes them uniquely appealing as transparent conductive electrodes in solar cells and interesting for optoelectronic and infrared-plasmonic applications. One of the new challenges that researchers and engineers are facing is merging optical and electrical control in a single device for developing next-generation photovoltaic, optoelectronic devices and energy-efficient solid-state lighting. In this work, the authors investigated the possible variations in the dielectric properties of aluminum-doped ZnO (AZO) upon gating by means of spectroscopic ellipsometry (SE). The authors investigated the electrical-bias-dependent optical response of thin AZO films fabricated by magnetron sputtering within a parallel-plane capacitor configuration. The authors address the possibility to control their optical and electric performances by applying bias, monitoring the effect of charge injection/depletion in the AZO layer by means of in operando SE versus applied gate voltage.
Transparent conductive oxide-based architectures for the electrical modulation of the optical response: A spectroscopic ellipsometry study
Sygletou, Maria;Bisio, Francesco;Benedetti, Stefania;Canepa, Maurizio
2019-01-01
Abstract
Transparent conductive oxides are a class of materials that combine high optical transparency with high electrical conductivity. This property makes them uniquely appealing as transparent conductive electrodes in solar cells and interesting for optoelectronic and infrared-plasmonic applications. One of the new challenges that researchers and engineers are facing is merging optical and electrical control in a single device for developing next-generation photovoltaic, optoelectronic devices and energy-efficient solid-state lighting. In this work, the authors investigated the possible variations in the dielectric properties of aluminum-doped ZnO (AZO) upon gating by means of spectroscopic ellipsometry (SE). The authors investigated the electrical-bias-dependent optical response of thin AZO films fabricated by magnetron sputtering within a parallel-plane capacitor configuration. The authors address the possibility to control their optical and electric performances by applying bias, monitoring the effect of charge injection/depletion in the AZO layer by means of in operando SE versus applied gate voltage.File | Dimensione | Formato | |
---|---|---|---|
JVB19-AR-ICSE2019-00250-1.pdf
accesso aperto
Tipologia:
Documento in Post-print
Dimensione
4.04 MB
Formato
Adobe PDF
|
4.04 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.