We analyzed thermal data from deep oil exploration and geothermal boreholes in the 1000-7000 m depth range to unravel thermal regime beneath the central-northern Apennines chain and the surrounding sedimentary basins. We particularly selected deepest bottom hole temperatures, all recorded within the permeable carbonate Paleogene-Mesozoic formations, which represent the most widespread tectono-stratigraphic unit of the study area. The available temperatures were corrected for the drilling disturbance and the thermal conductivity was estimated from detailed litho-stratigraphic information and by taking into account the pressure and temperature effect. The thermal resistance approach, including also the radiogenic heat production, was used to infer the terrestrial heat flow and to highlight possible advective perturbation due to groundwater circulation. Only two boreholes close to recharge areas argue for deep groundwater flow in the permeable carbonate unit, whereas most of the obtained heat-flow data may reflect the deep, undisturbed, conductive thermal regime.

Conductive heat flow pattern of the central-northern Apennines, Italy

Massimo Verdoya;Paolo Chiozzi;
2019-01-01

Abstract

We analyzed thermal data from deep oil exploration and geothermal boreholes in the 1000-7000 m depth range to unravel thermal regime beneath the central-northern Apennines chain and the surrounding sedimentary basins. We particularly selected deepest bottom hole temperatures, all recorded within the permeable carbonate Paleogene-Mesozoic formations, which represent the most widespread tectono-stratigraphic unit of the study area. The available temperatures were corrected for the drilling disturbance and the thermal conductivity was estimated from detailed litho-stratigraphic information and by taking into account the pressure and temperature effect. The thermal resistance approach, including also the radiogenic heat production, was used to infer the terrestrial heat flow and to highlight possible advective perturbation due to groundwater circulation. Only two boreholes close to recharge areas argue for deep groundwater flow in the permeable carbonate unit, whereas most of the obtained heat-flow data may reflect the deep, undisturbed, conductive thermal regime.
File in questo prodotto:
File Dimensione Formato  
IJTHFA 2019.pdf

accesso aperto

Tipologia: Documento in versione editoriale
Dimensione 3.39 MB
Formato Adobe PDF
3.39 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/984208
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact