According to the Seveso Directives, the risk assessment is crucial for an effective control of major accident hazard. Nevertheless, the complexity of many Seveso sites, due to human, technical and organizational factors makes recognized common practices limited because of their intrinsic static nature. In this paper, a dynamic approach for risk assessment is proposed, which allows evaluating moment by moment the state of the system under analysis by Bayesian belief networks. A petrochemical coastal storage was selected as applicative case-study to verify the capability of the dynamic approach. Network training is performed by entering historical reliability data, near-miss and accidents data series collected on-site by periodical inspection plans on critical elements, as well as from the evidences of SMS reports. Upon proper refinement and further validation with reliable field data, the predictive approach may be used as a management decision-making tool.
A Dynamic Approach to Fault Tree Analysis based on Bayesian Beliefs Networks
Vairo T.;Fabiano B.
2019-01-01
Abstract
According to the Seveso Directives, the risk assessment is crucial for an effective control of major accident hazard. Nevertheless, the complexity of many Seveso sites, due to human, technical and organizational factors makes recognized common practices limited because of their intrinsic static nature. In this paper, a dynamic approach for risk assessment is proposed, which allows evaluating moment by moment the state of the system under analysis by Bayesian belief networks. A petrochemical coastal storage was selected as applicative case-study to verify the capability of the dynamic approach. Network training is performed by entering historical reliability data, near-miss and accidents data series collected on-site by periodical inspection plans on critical elements, as well as from the evidences of SMS reports. Upon proper refinement and further validation with reliable field data, the predictive approach may be used as a management decision-making tool.File | Dimensione | Formato | |
---|---|---|---|
CET77Dyn.pdf
accesso aperto
Descrizione: Full paper
Tipologia:
Documento in versione editoriale
Dimensione
1.04 MB
Formato
Adobe PDF
|
1.04 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.