The acoustic dispersion properties of monodimensional waveguide filters can be assessed by means of the simple prototypical mechanical system made of an infinite stack of periodic massive blocks, connected to each other by elastic joints. The linear undamped dynamics of the periodic cell is governed by a two degree-of-freedom Lagrangian model. The eigenproblem governing the free propagation of shear and moment waves is solved analytically and the two dispersion relations are obtained in a suited closed form fashion. Therefore, the pass and stop bandwidths are conveniently determined in the minimal space of the independent mechanical parameters. Stop bands in the ultra-low frequency range are achieved by coupling the stacked material with an elastic half-space modelled as a Winkler support. A convenient fine approximation of the dispersion relations is pursued by formulating homogenised micropolar continuum models. An enhanced continualization approach, employing a proper Maclaurin approximation of pseudo-differential operators, is adopted to successfully approximate the acoustic and optical branches of the dispersion spectrum of the Lagrangian models, both in the absence and in the presence of the elastic support.
Acoustic waveguide filters made up of rigid stacked materials with elastic joints
Bacigalupo A.;Gambarotta L.;Lepidi M.;Vadala F.
2019-01-01
Abstract
The acoustic dispersion properties of monodimensional waveguide filters can be assessed by means of the simple prototypical mechanical system made of an infinite stack of periodic massive blocks, connected to each other by elastic joints. The linear undamped dynamics of the periodic cell is governed by a two degree-of-freedom Lagrangian model. The eigenproblem governing the free propagation of shear and moment waves is solved analytically and the two dispersion relations are obtained in a suited closed form fashion. Therefore, the pass and stop bandwidths are conveniently determined in the minimal space of the independent mechanical parameters. Stop bands in the ultra-low frequency range are achieved by coupling the stacked material with an elastic half-space modelled as a Winkler support. A convenient fine approximation of the dispersion relations is pursued by formulating homogenised micropolar continuum models. An enhanced continualization approach, employing a proper Maclaurin approximation of pseudo-differential operators, is adopted to successfully approximate the acoustic and optical branches of the dispersion spectrum of the Lagrangian models, both in the absence and in the presence of the elastic support.File | Dimensione | Formato | |
---|---|---|---|
1330 - Meccanica 54(13) 2019 pp.2039-2052.pdf
accesso chiuso
Descrizione: Meccanica 54(13) 2019 pp.2039-2052
Tipologia:
Documento in versione editoriale
Dimensione
2.03 MB
Formato
Adobe PDF
|
2.03 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.