Given α > 0, we construct a weighted Lebesgue measure on Rnfor which the family of nonconstant curves has p-modulus zero for p ≤ 1 + α but the weight is a Muckenhoupt Ap weight for p > 1 + α. In particular, the p-weak gradient is trivial for small p but nontrivial for large p. This answers an open question posed by several authors. We also give a full description of the p-weak gradient for any locally finite Borel measure on R.
Titolo: | The p-weak gradient depends on p | |
Autori: | ||
Data di pubblicazione: | 2015 | |
Rivista: | ||
Handle: | http://hdl.handle.net/11567/977456 | |
Appare nelle tipologie: | 01.01 - Articolo su rivista |
File in questo prodotto:
File | Descrizione | Tipologia | |
---|---|---|---|
Dependence of the p-Weak Gradient on p.pdf | Documento in Post-print | Open Access Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.