A 3D image I is well-composed if it does not contain critical edges or vertices (where the boundary of I is non-manifold). The process of transforming an image into a well composed one is called repairing. We propose to repair 3D images by associating the face-centered cubic grid (FCC grid) with the cubic grid. We show that the polyhedral complex in the FCC grid, obtained by our repairing algorithm, is well composed and homotopy equivalent to the complex naturally associated with the given image I with edge-adjacency (18-adjacency). We illustrate an application on two tasks related to the repaired image: boundary reconstruction and computation of its Euler characteristic.

Repairing 3D binary images using the FCC grid

Magillo, Paola
2019-01-01

Abstract

A 3D image I is well-composed if it does not contain critical edges or vertices (where the boundary of I is non-manifold). The process of transforming an image into a well composed one is called repairing. We propose to repair 3D images by associating the face-centered cubic grid (FCC grid) with the cubic grid. We show that the polyhedral complex in the FCC grid, obtained by our repairing algorithm, is well composed and homotopy equivalent to the complex naturally associated with the given image I with edge-adjacency (18-adjacency). We illustrate an application on two tasks related to the repaired image: boundary reconstruction and computation of its Euler characteristic.
File in questo prodotto:
File Dimensione Formato  
postprint.pdf

accesso chiuso

Descrizione: Articolo completo
Tipologia: Documento in Post-print
Dimensione 3.2 MB
Formato Adobe PDF
3.2 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/974967
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 6
social impact