Smart factories are on the verge of becoming the new industrial paradigm, wherein optimization permeates all aspects of production, from concept generation to sales. To fully pursue this paradigm, flexibility in the production means as well as in their timely organization is of paramount importance. AI planning can play a major role in this transition, but the scenarios encountered in practice might be challenging for current tools. We explore the use of SMT at the core of planning techniques to deal with real-world scenarios in the emerging smart factory paradigm. We present special-purpose and general-purpose algorithms, based on current automated reasoning technology and designed to tackle complex application domains. We evaluate their effectiveness and respective merits on a logistic scenario, also extending the comparison to other state-of-the-art task planners.

SMT-based Planning for Robots in Smart Factories

Leofante, Francesco;Tacchella, Armando
2019-01-01

Abstract

Smart factories are on the verge of becoming the new industrial paradigm, wherein optimization permeates all aspects of production, from concept generation to sales. To fully pursue this paradigm, flexibility in the production means as well as in their timely organization is of paramount importance. AI planning can play a major role in this transition, but the scenarios encountered in practice might be challenging for current tools. We explore the use of SMT at the core of planning techniques to deal with real-world scenarios in the emerging smart factory paradigm. We present special-purpose and general-purpose algorithms, based on current automated reasoning technology and designed to tackle complex application domains. We evaluate their effectiveness and respective merits on a logistic scenario, also extending the comparison to other state-of-the-art task planners.
2019
978-3-030-22998-6
978-3-030-22999-3
File in questo prodotto:
File Dimensione Formato  
main.pdf

accesso chiuso

Tipologia: Documento in Post-print
Dimensione 436.68 kB
Formato Adobe PDF
436.68 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/957560
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
social impact