In this work, the preparation of a novel enzyme carrier based on a polymer multicomponent system was assessed. Indeed, the design of the above system considered several issues that are the need of applying a biodegradable polymer carrier, characterized by a nanometric dimension, thus suitable to diffuse into the dense mucus structure, with functionalities capable of interacting/reacting with enzymes but resistant to enzymatic degradation. The particles were prepared from solutions containing equimolar amount of high-molecular-weight poly(L-lactide) (PLLA) and poly(D-lactide) (PDLA) and by applying the nanoprecipitation method. Dynamic Light Scattering (DLS) measurements allowed to establish the optimal preparation conditions to obtain polymer particles characterized by diameters lower than 1 μm, which dimensions were confirmed by Field Emission Scanning Electron Microscope (FE-SEM) analysis. In order to produce surface functionalization, necessary for anchoring enzymes, the stereocomplexed particles, whose structuration was confirmed by Differential Scanning Calorimetry (DSC) measurements, underwent an amminolysis reaction by using a diamine as reactant. The treated particles were characterized by means of FE-SEM, Fourier-Transform Infrared Spectroscopy (FTIR), DLS and zeta potential measurements and their characteristics were compared with those of the neat PLLA/PDLA particles. The degree of functionalization turned out to depend on the applied conditions, it increasing by enhancing the reaction time. The activity of enzymes, i.e. papain and alginate lyase, anchored to the particles, was evaluated by Quartz Crystal Microbalance (QCM) and UV measurements. Moreover, with the aim at exploiting the material for an inhalation administration, a method to encapsulate the enzyme-particles systems was assessed. Conversely to free enzymes, the developed systems were found to be capable of diminishing the viscosity of two hydrogels, ad hoc prepared and based on the main constituents of the real mucus.

Encapsulated functionalized stereocomplex PLA particles: An effective system to support mucolytic enzymes

Boi S.;Dellacasa E.;Pastorino L.;Monticelli O.
2019-01-01

Abstract

In this work, the preparation of a novel enzyme carrier based on a polymer multicomponent system was assessed. Indeed, the design of the above system considered several issues that are the need of applying a biodegradable polymer carrier, characterized by a nanometric dimension, thus suitable to diffuse into the dense mucus structure, with functionalities capable of interacting/reacting with enzymes but resistant to enzymatic degradation. The particles were prepared from solutions containing equimolar amount of high-molecular-weight poly(L-lactide) (PLLA) and poly(D-lactide) (PDLA) and by applying the nanoprecipitation method. Dynamic Light Scattering (DLS) measurements allowed to establish the optimal preparation conditions to obtain polymer particles characterized by diameters lower than 1 μm, which dimensions were confirmed by Field Emission Scanning Electron Microscope (FE-SEM) analysis. In order to produce surface functionalization, necessary for anchoring enzymes, the stereocomplexed particles, whose structuration was confirmed by Differential Scanning Calorimetry (DSC) measurements, underwent an amminolysis reaction by using a diamine as reactant. The treated particles were characterized by means of FE-SEM, Fourier-Transform Infrared Spectroscopy (FTIR), DLS and zeta potential measurements and their characteristics were compared with those of the neat PLLA/PDLA particles. The degree of functionalization turned out to depend on the applied conditions, it increasing by enhancing the reaction time. The activity of enzymes, i.e. papain and alginate lyase, anchored to the particles, was evaluated by Quartz Crystal Microbalance (QCM) and UV measurements. Moreover, with the aim at exploiting the material for an inhalation administration, a method to encapsulate the enzyme-particles systems was assessed. Conversely to free enzymes, the developed systems were found to be capable of diminishing the viscosity of two hydrogels, ad hoc prepared and based on the main constituents of the real mucus.
File in questo prodotto:
File Dimensione Formato  
CollSurfB.pdf

accesso chiuso

Tipologia: Documento in versione editoriale
Dimensione 1.79 MB
Formato Adobe PDF
1.79 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/955450
Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 25
  • ???jsp.display-item.citation.isi??? 25
social impact