Within the European project DexROV the topic of underwater intervention is addressed. In particular, a remote control room is connected through a satellite communication link to surface vessel, which is in turn connected to an UVMS (Underwater Vehicle-Manipulator System) with an umbilical cable. The operator may interact with the system using a joystick or exoskeleton. Since a direct teleoperation is not feasible, a cognitive engine is in charge of handling communication latency or interruptions caused by the satellite link, and the UVMS should have sufficient autonomy in dealing with low level constraints or secondary objectives. To this purpose, a task-priority-based inverse kinematics algorithm has been developed in order to allow the operator to control only the end effector, while the algorithm is in charge of handling both operative and joint-space constraints. This paper describes some preliminary experimental results achieved during the DexROV campaign of July 2017 in Marseilles (France), where most of the components have been successfully integrated and the inverse kinematics nicely run.

Satellite-Based Tele-Operation of an Underwater Vehicle-Manipulator System. Preliminary Experimental Results

Simetti E.;Casalino G.;
2018-01-01

Abstract

Within the European project DexROV the topic of underwater intervention is addressed. In particular, a remote control room is connected through a satellite communication link to surface vessel, which is in turn connected to an UVMS (Underwater Vehicle-Manipulator System) with an umbilical cable. The operator may interact with the system using a joystick or exoskeleton. Since a direct teleoperation is not feasible, a cognitive engine is in charge of handling communication latency or interruptions caused by the satellite link, and the UVMS should have sufficient autonomy in dealing with low level constraints or secondary objectives. To this purpose, a task-priority-based inverse kinematics algorithm has been developed in order to allow the operator to control only the end effector, while the algorithm is in charge of handling both operative and joint-space constraints. This paper describes some preliminary experimental results achieved during the DexROV campaign of July 2017 in Marseilles (France), where most of the components have been successfully integrated and the inverse kinematics nicely run.
2018
978-1-5386-3081-5
File in questo prodotto:
File Dimensione Formato  
OA_2018_06_ICRA_Satellite-based tele-operation of an underwater vehicle-manipulator system. Preliminary experimental results.pdf

accesso aperto

Tipologia: Documento in Post-print
Dimensione 1.47 MB
Formato Adobe PDF
1.47 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/952941
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 7
social impact