Support Vector Machines (SVMs) are a state-of-the-art and powerful learning algorithm that can effectively solve many real world problems. SVMs are the transposition of the Vapnik–Chervonenkis (VC) theory into a learning algorithm. In this paper, we present the Local Rademacher Complexity Machine (LRCM), a transposition of the Local Rademacher Complexity (LRC) theory, the state-of-the-art evolution of the VC theory, into a learning algorithm. Analogously to what has been done for the SVMs, we will present first the theoretical ideas behind the LRC theory, we will show how these ideas can be translated into a learning algorithm, the LRCM, and then how the LRCM can be made efficient and kernelizable. By exploiting a series of real world datasets, we will show the effectiveness of the LRCM against the SVMs.
Local Rademacher Complexity Machine
Oneto L.;Ridella S.;Anguita D.
2019-01-01
Abstract
Support Vector Machines (SVMs) are a state-of-the-art and powerful learning algorithm that can effectively solve many real world problems. SVMs are the transposition of the Vapnik–Chervonenkis (VC) theory into a learning algorithm. In this paper, we present the Local Rademacher Complexity Machine (LRCM), a transposition of the Local Rademacher Complexity (LRC) theory, the state-of-the-art evolution of the VC theory, into a learning algorithm. Analogously to what has been done for the SVMs, we will present first the theoretical ideas behind the LRC theory, we will show how these ideas can be translated into a learning algorithm, the LRCM, and then how the LRCM can be made efficient and kernelizable. By exploiting a series of real world datasets, we will show the effectiveness of the LRCM against the SVMs.File | Dimensione | Formato | |
---|---|---|---|
J036 - NEUCOM.pdf
accesso chiuso
Tipologia:
Documento in versione editoriale
Dimensione
652.74 kB
Formato
Adobe PDF
|
652.74 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.