Themulti-fidelity machine learning framework proposed in this paper leverages a probabilistic approach based on Gaussian Process modeling for the formulation of stochastic response surfaces capable of describing propeller performance for different mission profiles. The proposed multi-fidelity techniques will help coping with the scarcity of high-fidelity measurements by using lower-fidelity numerical predictions. The existing correlation of the multi-fidelity datasets is used to infer high-fidelity measurements from lower fidelity numerical predictions. TheprobabilisticformulationsembeddedinGaussianProcessregressionsgivestheuniqueop-portunitytolearnthetargetfunctionsdescribingpropellerperformanceatdifferentoperatingconditions,whilequantifyingtheuncertaintyassociatedtothatspecificprediction.Whilethemulti-fidelityautoregressiveschemeallowstoconstructhighaccurateresponsesurfacesusingonlyfewexperimentaldata,UncertaintyQuantification(UQ)providesanimportantmetrictoassesthequalityofthelearningprocess.Wedemonstratethecapabilityoftheproposedframe-worktopredicttheperformanceofacontrollablepitchpropellerusingfewexperimentaldatacomingfromtowingtankexperimentsandmanymedium-fidelitypredictionsobtainedusinganin-housedevelopedBEM,validatedandverifiedinmanypreviousstudies.
A Data-Driven Probabilistic Learning approach for the Prediction of Controllable Pitch Propellers Performance
Stefano Gaggero;Antonio Coppedé;Diego Villa;Giuliano Vernengo;Luca Bonfiglio
2019-01-01
Abstract
Themulti-fidelity machine learning framework proposed in this paper leverages a probabilistic approach based on Gaussian Process modeling for the formulation of stochastic response surfaces capable of describing propeller performance for different mission profiles. The proposed multi-fidelity techniques will help coping with the scarcity of high-fidelity measurements by using lower-fidelity numerical predictions. The existing correlation of the multi-fidelity datasets is used to infer high-fidelity measurements from lower fidelity numerical predictions. TheprobabilisticformulationsembeddedinGaussianProcessregressionsgivestheuniqueop-portunitytolearnthetargetfunctionsdescribingpropellerperformanceatdifferentoperatingconditions,whilequantifyingtheuncertaintyassociatedtothatspecificprediction.Whilethemulti-fidelityautoregressiveschemeallowstoconstructhighaccurateresponsesurfacesusingonlyfewexperimentaldata,UncertaintyQuantification(UQ)providesanimportantmetrictoassesthequalityofthelearningprocess.Wedemonstratethecapabilityoftheproposedframe-worktopredicttheperformanceofacontrollablepitchpropellerusingfewexperimentaldatacomingfromtowingtankexperimentsandmanymedium-fidelitypredictionsobtainedusinganin-housedevelopedBEM,validatedandverifiedinmanypreviousstudies.File | Dimensione | Formato | |
---|---|---|---|
MARINE_Multi.pdf
accesso chiuso
Tipologia:
Documento in versione editoriale
Dimensione
460.28 kB
Formato
Adobe PDF
|
460.28 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.