Background: Several automatic tools have been implemented for semi-quantitative assessment of brain [ 18 ]F-FDG-PET. Objective: We aimed to head-to-head compare the diagnostic performance among three statistical parametric mapping (SPM)-based approaches, another voxel-based tool (i.e., PALZ), and a volumetric region of interest (VROI-SVM)-based approach, in distinguishing patients with prodromal Alzheimer's disease (pAD) from controls. Methods: Sixty-two pAD patients (MMSE score = 27.0±1.6) and one hundred-nine healthy subjects (CTR) (MMSE score = 29.2±1.2) were enrolled in five centers of the European Alzheimer's Disease Consortium. The three SPM-based methods, based on different rationales, included 1) a cluster identified through the correlation analysis between [ 18 ]F-FDG-PET and a verbal memory test (VROI-1), 2) a VROI derived from the comparison between pAD and CTR (VROI-2), and 3) visual analysis of individual maps obtained by the comparison between each subject and CTR (SPM-Maps). The VROI-SVM approach was based on 6 VROI plus 6 VROI asymmetry values derived from the pAD versus CTR comparison thanks to support vector machine (SVM). Results: The areas under the ROC curves between pAD and CTR were 0.84 for VROI-1, 0.83 for VROI-2, 0.79 for SPM maps, 0.87 for PALZ, and 0.95 for VROI-SVM. Pairwise comparisons of Youden index did not show statistically significant differences in diagnostic performance between VROI-1, VROI-2, SPM-Maps, and PALZ score whereas VROI-SVM performed significantly (p < 0.005) better than any of the other methods. Conclusion: The study confirms the good accuracy of [ 18 ]F-FDG-PET in discriminating healthy subjects from pAD and highlights that a non-linear, automatic VROI classifier based on SVM performs better than the voxel-based methods.

Head-to-Head Comparison among Semi-Quantification Tools of Brain FDG-PET to Aid the Diagnosis of Prodromal Alzheimer's Disease

Brugnolo, Andrea;De Carli, Fabrizio;Morbelli, Silvia;Chincarini, Andrea;Arnaldi, Dario;Massa, Federico;Grazzini, Matteo;Pardini, Matteo;Bauckneht, Matteo;Sambuceti, Gianmario;Nobili, Flavio.
2019

Abstract

Background: Several automatic tools have been implemented for semi-quantitative assessment of brain [ 18 ]F-FDG-PET. Objective: We aimed to head-to-head compare the diagnostic performance among three statistical parametric mapping (SPM)-based approaches, another voxel-based tool (i.e., PALZ), and a volumetric region of interest (VROI-SVM)-based approach, in distinguishing patients with prodromal Alzheimer's disease (pAD) from controls. Methods: Sixty-two pAD patients (MMSE score = 27.0±1.6) and one hundred-nine healthy subjects (CTR) (MMSE score = 29.2±1.2) were enrolled in five centers of the European Alzheimer's Disease Consortium. The three SPM-based methods, based on different rationales, included 1) a cluster identified through the correlation analysis between [ 18 ]F-FDG-PET and a verbal memory test (VROI-1), 2) a VROI derived from the comparison between pAD and CTR (VROI-2), and 3) visual analysis of individual maps obtained by the comparison between each subject and CTR (SPM-Maps). The VROI-SVM approach was based on 6 VROI plus 6 VROI asymmetry values derived from the pAD versus CTR comparison thanks to support vector machine (SVM). Results: The areas under the ROC curves between pAD and CTR were 0.84 for VROI-1, 0.83 for VROI-2, 0.79 for SPM maps, 0.87 for PALZ, and 0.95 for VROI-SVM. Pairwise comparisons of Youden index did not show statistically significant differences in diagnostic performance between VROI-1, VROI-2, SPM-Maps, and PALZ score whereas VROI-SVM performed significantly (p < 0.005) better than any of the other methods. Conclusion: The study confirms the good accuracy of [ 18 ]F-FDG-PET in discriminating healthy subjects from pAD and highlights that a non-linear, automatic VROI classifier based on SVM performs better than the voxel-based methods.
File in questo prodotto:
File Dimensione Formato  
JAD2019_Brugnolo.pdf

accesso chiuso

Tipologia: Documento in versione editoriale
Dimensione 321.37 kB
Formato Adobe PDF
321.37 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/943099
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 11
social impact