Introduction: Mechanical ventilation is required to support respiratory function in the acute respiratory distress syndrome (ARDS), but it may promote lung damage, a phenomenon known as ventilator-induced lung injury (VILI). Areas covered: Several mechanisms of VILI have been described, such as: inspiratory and/or expiratory stress inducing overdistension (volutrauma); interfaces between collapsed or edema-filled alveoli with surrounding open alveoli, acting as stress raisers; alveoli that repetitively open and close during tidal breathing (atelectrauma); and peripheral airway dynamics. In this review, we discuss: the definition and classification of ARDS; ventilatory parameters that act as VILI determinants (tidal volume, respiratory rate, positive end-expiratory pressure, peak, plateau, driving and transpulmonary pressures, energy, mechanical power, and intensity); and the roles of prone positioning and muscle paralysis. We seek to provide an up-to-date overview of the evidence in the field from a clinical perspective. Expert commentary: To prevent VILI, mechanical ventilation strategies should minimize inspiratory/expiratory stress, dynamic/static strain, energy, mechanical power, and intensity, as well as mitigate the hemodynamic consequences of positive-pressure ventilation. In patients with moderate to severe ARDS, prone positioning can reduce lung damage and improve survival. Overall, volutrauma seems to be more harmful than atelectrauma. Extracorporeal support should be considered in selected cases.

Ventilator-induced lung injury during controlled ventilation in patients with acute respiratory distress syndrome: less is probably better

Ball, L.;Pelosi, P.
2018-01-01

Abstract

Introduction: Mechanical ventilation is required to support respiratory function in the acute respiratory distress syndrome (ARDS), but it may promote lung damage, a phenomenon known as ventilator-induced lung injury (VILI). Areas covered: Several mechanisms of VILI have been described, such as: inspiratory and/or expiratory stress inducing overdistension (volutrauma); interfaces between collapsed or edema-filled alveoli with surrounding open alveoli, acting as stress raisers; alveoli that repetitively open and close during tidal breathing (atelectrauma); and peripheral airway dynamics. In this review, we discuss: the definition and classification of ARDS; ventilatory parameters that act as VILI determinants (tidal volume, respiratory rate, positive end-expiratory pressure, peak, plateau, driving and transpulmonary pressures, energy, mechanical power, and intensity); and the roles of prone positioning and muscle paralysis. We seek to provide an up-to-date overview of the evidence in the field from a clinical perspective. Expert commentary: To prevent VILI, mechanical ventilation strategies should minimize inspiratory/expiratory stress, dynamic/static strain, energy, mechanical power, and intensity, as well as mitigate the hemodynamic consequences of positive-pressure ventilation. In patients with moderate to severe ARDS, prone positioning can reduce lung damage and improve survival. Overall, volutrauma seems to be more harmful than atelectrauma. Extracorporeal support should be considered in selected cases.
File in questo prodotto:
File Dimensione Formato  
2018_ExpRev_VILI_Less_is_better.pdf

accesso chiuso

Tipologia: Documento in versione editoriale
Dimensione 1.52 MB
Formato Adobe PDF
1.52 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/942671
Citazioni
  • ???jsp.display-item.citation.pmc??? 18
  • Scopus 35
  • ???jsp.display-item.citation.isi??? 30
social impact