In this article we study Hilbert functions and isomorphism classes of Artinian level local algebras via Macaulay's inverse system. Upper and lower bounds concerning numerical functions admissible for level algebras of fixed type and socle degree are known. For each value in this range we exhibit a level local algebra with that Hilbert function, provided that the socle degree is at most three. Furthermore, we prove that level local algebras of socle degree three and maximal Hilbert function are graded. In the graded case, the extremal strata have been parametrized by Cho and Iarrobino.

ARTINIAN LEVEL ALGEBRAS OF LOW SOCLE DEGREE

De Stefani A
2014

Abstract

In this article we study Hilbert functions and isomorphism classes of Artinian level local algebras via Macaulay's inverse system. Upper and lower bounds concerning numerical functions admissible for level algebras of fixed type and socle degree are known. For each value in this range we exhibit a level local algebra with that Hilbert function, provided that the socle degree is at most three. Furthermore, we prove that level local algebras of socle degree three and maximal Hilbert function are graded. In the graded case, the extremal strata have been parametrized by Cho and Iarrobino.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11567/942114
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 5
social impact