We consider a device which allows one to create and probe single Majorana fermions, in the form of Bogoliubov quasiparticles. It is composed of two counterpropagating edge channels, each put in proximity with a superconducting region where Andreev reflection operates, and which thus converts electrons into Bogoliubov quasiparticles. The edge channels then meet at a quantum point contact where collisions can be achieved. A voltage-biased version of the setup was studied [C. W. J. Beenakker, Phys. Rev. Lett. 112, 070604 (2014)PRLTAO0031-900710.1103/PhysRevLett.112.070604] and showed nonlocal interference phenomena and signatures of Bogoliubov quasiparticle collisions in the high-frequency noise characteristics at the output, constituting an evidence of the Majorana fermion nature of these excitations. Here, voltage-biased leads are replaced by single-electron sources in order to achieve collisions of single Bogoliubov quasiparticles, with the major advantage that zero-frequency noise measurements are sufficient to access the intimate nature of Bogoliubov wave packets. We compute the injection parameters of the source, and go on to investigate the Hanbury-Brown and Twiss and Hong-Ou-Mandel signal at the output, as a function of the mixing angle which controls the electron/hole component of the Bogoliubov wave packet. In particular, information on the internal structure of the Bogoliubov quasiparticle can be recovered when such a quasiparticle collides with a pure electron. Experimental feasibility with singlet or triplet superconductors is discussed.

Nonlocal interference and Hong-Ou-Mandel collisions of single Bogoliubov quasiparticles

Ferraro, D.;Martin, T.
2015-01-01

Abstract

We consider a device which allows one to create and probe single Majorana fermions, in the form of Bogoliubov quasiparticles. It is composed of two counterpropagating edge channels, each put in proximity with a superconducting region where Andreev reflection operates, and which thus converts electrons into Bogoliubov quasiparticles. The edge channels then meet at a quantum point contact where collisions can be achieved. A voltage-biased version of the setup was studied [C. W. J. Beenakker, Phys. Rev. Lett. 112, 070604 (2014)PRLTAO0031-900710.1103/PhysRevLett.112.070604] and showed nonlocal interference phenomena and signatures of Bogoliubov quasiparticle collisions in the high-frequency noise characteristics at the output, constituting an evidence of the Majorana fermion nature of these excitations. Here, voltage-biased leads are replaced by single-electron sources in order to achieve collisions of single Bogoliubov quasiparticles, with the major advantage that zero-frequency noise measurements are sufficient to access the intimate nature of Bogoliubov wave packets. We compute the injection parameters of the source, and go on to investigate the Hanbury-Brown and Twiss and Hong-Ou-Mandel signal at the output, as a function of the mixing angle which controls the electron/hole component of the Bogoliubov wave packet. In particular, information on the internal structure of the Bogoliubov quasiparticle can be recovered when such a quasiparticle collides with a pure electron. Experimental feasibility with singlet or triplet superconductors is discussed.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/941500
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 16
social impact