The use of model predictive control (MPC) in advanced power systems can be advantageous in controlling highly coupled variables and optimizing system operations. Solid oxide fuel cell/gas turbine (SOFC/GT) hybrids are an example where advanced control techniques can be effectively applied. For example, to manage load distribution among several identical generation units characterized by different temperature distributions due to different degradation paths of the fuel cell stacks. When implementing an MPC, a critical aspect is the trade-off between model accuracy and simplicity, the latter related to a fast computational time. In this work, a hybrid physical and numerical approach was used to reduce the number of states necessary to describe such complex target system. The reduced number of states in the model and the simple framework allow real-time performance and potential extension to a wide range of power plants for industrial application, at the expense of accuracy losses, discussed in the paper.

Advanced Control for Clusters of SOFC/Gas Turbine Hybrid Systems

Rossi, Iacopo;Zaccaria, Valentina;Traverso, Alberto
2018-01-01

Abstract

The use of model predictive control (MPC) in advanced power systems can be advantageous in controlling highly coupled variables and optimizing system operations. Solid oxide fuel cell/gas turbine (SOFC/GT) hybrids are an example where advanced control techniques can be effectively applied. For example, to manage load distribution among several identical generation units characterized by different temperature distributions due to different degradation paths of the fuel cell stacks. When implementing an MPC, a critical aspect is the trade-off between model accuracy and simplicity, the latter related to a fast computational time. In this work, a hybrid physical and numerical approach was used to reduce the number of states necessary to describe such complex target system. The reduced number of states in the model and the simple framework allow real-time performance and potential extension to a wide range of power plants for industrial application, at the expense of accuracy losses, discussed in the paper.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/940483
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 8
social impact