The great availability of commercial drones has raised growing interest among people, since remotely piloted vehicles can be employed in numerous applications. The pervasive use of these devices has created many privacy and safety concerns that need to be addressed by means of proper surveillance systems able to cope with such threats. In this paper, we propose a WiFi statistical fingerprint-based drone detection approach, which is capable of identifying nearby drone threats, even in the presence of malicious attacks. We present a performance analysis carried out through experimental tests, where our solution is able to achieve very good results in terms of correct recognitions in many real-life scenarios, with a peak true positive rate of 96%.
Blind detection: Advanced techniques for WiFi-based drone surveillance
Bisio, Igor;Garibotto, Chiara;Lavagetto, Fabio;Sciarrone, Andrea;Zappatore, Sandro
2019-01-01
Abstract
The great availability of commercial drones has raised growing interest among people, since remotely piloted vehicles can be employed in numerous applications. The pervasive use of these devices has created many privacy and safety concerns that need to be addressed by means of proper surveillance systems able to cope with such threats. In this paper, we propose a WiFi statistical fingerprint-based drone detection approach, which is capable of identifying nearby drone threats, even in the presence of malicious attacks. We present a performance analysis carried out through experimental tests, where our solution is able to achieve very good results in terms of correct recognitions in many real-life scenarios, with a peak true positive rate of 96%.File | Dimensione | Formato | |
---|---|---|---|
tvt-18-droni.pdf
accesso chiuso
Tipologia:
Documento in versione editoriale
Dimensione
926.91 kB
Formato
Adobe PDF
|
926.91 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.