Machine learning algorithms are typically designed to deal with data represented as vectors. Several major applications, however, involve multi-way data, such as video sequences and multi-sensory arrays. In those cases, tensors endow a more consistent way to capture multi-modal relations, which may be lost by a conventional remapping of original data into a vector representation. This paper presents a tensor-oriented machine learning framework, and shows that the theory of learning with similarity functions provides an effective paradigm to support this framework. The proposed approach adopts a specific similarity function, which defines a measure of similarity between a pair of tensors. The performance of the tensor-based framework is evaluated on a set of complex, real-world, pattern-recognition problems. Experimental results confirm the effectiveness of the framework, which compares favorably with state-of-the-art machine learning methodologies that can accept tensors as inputs. Indeed, a formal analysis proves that the framework is more efficient than state-of-the-art methodologies also in terms of computational cost. The paper thus provides two main outcomes: (1) a theoretical framework that enables the use of tensor-oriented similarity notions and (2) a cognitively inspired notion of similarity that leads to computationally efficient predictors.

Learning with Similarity Functions: a Tensor-Based Framework

Ragusa, Edoardo;Gastaldo, Paolo;Zunino, Rodolfo;
2019-01-01

Abstract

Machine learning algorithms are typically designed to deal with data represented as vectors. Several major applications, however, involve multi-way data, such as video sequences and multi-sensory arrays. In those cases, tensors endow a more consistent way to capture multi-modal relations, which may be lost by a conventional remapping of original data into a vector representation. This paper presents a tensor-oriented machine learning framework, and shows that the theory of learning with similarity functions provides an effective paradigm to support this framework. The proposed approach adopts a specific similarity function, which defines a measure of similarity between a pair of tensors. The performance of the tensor-based framework is evaluated on a set of complex, real-world, pattern-recognition problems. Experimental results confirm the effectiveness of the framework, which compares favorably with state-of-the-art machine learning methodologies that can accept tensors as inputs. Indeed, a formal analysis proves that the framework is more efficient than state-of-the-art methodologies also in terms of computational cost. The paper thus provides two main outcomes: (1) a theoretical framework that enables the use of tensor-oriented similarity notions and (2) a cognitively inspired notion of similarity that leads to computationally efficient predictors.
File in questo prodotto:
File Dimensione Formato  
Ragusa2019_Article_LearningWithSimilarityFunction.pdf

accesso chiuso

Tipologia: Documento in versione editoriale
Dimensione 3.9 MB
Formato Adobe PDF
3.9 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/938736
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 7
social impact