The availability of compact digital circuitry for the support of neural networks is a key requirement for resource-constrained embedded systems. This brief tackles the implementation of single hidden-layer feedforward neural networks, based on hard-limit activation functions, on reconfigurable devices. The resulting design strategy relies on a novel learning procedure that inherits the approach adopted in the Extreme Learning Machine paradigm. The eventual training process balances accuracy and network complexity effectively, thus supporting a digital architecture that prioritizes area utilization over computational performance. Experimental tests confirm that the design approach leads to efficient digital implementations of the predictor on low-performance devices.
A digital implementation of extreme learning machines for resource-constrained devices
Ragusa, Edoardo;Gianoglio, Christian;Gastaldo, Paolo;Zunino, Rodolfo
2018-01-01
Abstract
The availability of compact digital circuitry for the support of neural networks is a key requirement for resource-constrained embedded systems. This brief tackles the implementation of single hidden-layer feedforward neural networks, based on hard-limit activation functions, on reconfigurable devices. The resulting design strategy relies on a novel learning procedure that inherits the approach adopted in the Extreme Learning Machine paradigm. The eventual training process balances accuracy and network complexity effectively, thus supporting a digital architecture that prioritizes area utilization over computational performance. Experimental tests confirm that the design approach leads to efficient digital implementations of the predictor on low-performance devices.File | Dimensione | Formato | |
---|---|---|---|
08291601.pdf
accesso chiuso
Tipologia:
Documento in versione editoriale
Dimensione
737.41 kB
Formato
Adobe PDF
|
737.41 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.