The effectiveness of tie-rods is widely stressed in past earthquakes and they are still used today as reinforcement intervention, given that their use is a low-invasive and low-expensive technique. However, the earthquake design of these devices is not so simple since the main feature of a tie-rod derives from its ductility and that should be preserved as was done in the past. In this article, some considerations about static and seismic design of tie-rods are made, highlighting the main failure modes of the system. To assess seismic vulnerability of I-mode mechanism, displacement-based methods are usually used, requiring high elongation capability of the tie-rods. For this reason, an experimental campaign was carried out to define clearly the maximum elongation of tie-rods and to investigate the influence of bar length on ductility. The results have shown a good displacement capacity that decreases with the increase of steel strength. A simplified formulation, obtained from nonlinear kinematic analysis, is derived to evaluate quickly the seismic vulnerability of I-mode mechanism with tie-rods and to design this common retrofitting intervention in existing buildings.

Earthquakes and Tie-Rods: Assessment, Design, and Ductility Issues

Podestà, Stefano;Scandolo, Lorenzo
2019-01-01

Abstract

The effectiveness of tie-rods is widely stressed in past earthquakes and they are still used today as reinforcement intervention, given that their use is a low-invasive and low-expensive technique. However, the earthquake design of these devices is not so simple since the main feature of a tie-rod derives from its ductility and that should be preserved as was done in the past. In this article, some considerations about static and seismic design of tie-rods are made, highlighting the main failure modes of the system. To assess seismic vulnerability of I-mode mechanism, displacement-based methods are usually used, requiring high elongation capability of the tie-rods. For this reason, an experimental campaign was carried out to define clearly the maximum elongation of tie-rods and to investigate the influence of bar length on ductility. The results have shown a good displacement capacity that decreases with the increase of steel strength. A simplified formulation, obtained from nonlinear kinematic analysis, is derived to evaluate quickly the seismic vulnerability of I-mode mechanism with tie-rods and to design this common retrofitting intervention in existing buildings.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/938460
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 14
social impact