In recent years, airborne and spaceborne hyperspectral imaging systems have advanced in terms of spectral and spatial resolution, which makes the data sets they produce a valuable source for land cover classification. The availability of hyperspectral data with fine spatial resolution has revolutionized hyperspectral image (HSI) classification techniques by taking advantage of both spectral and spatial information in a single classification framework.
New Frontiers in Spectral-Spatial Hyperspectral Image Classification: The Latest Advances Based on Mathematical Morphology, Markov Random Fields, Segmentation, Sparse Representation, and Deep Learning
Moser, Gabriele;De Giorgi, Andrea;Serpico, Sebastiano B.;
2018-01-01
Abstract
In recent years, airborne and spaceborne hyperspectral imaging systems have advanced in terms of spectral and spatial resolution, which makes the data sets they produce a valuable source for land cover classification. The availability of hyperspectral data with fine spatial resolution has revolutionized hyperspectral image (HSI) classification techniques by taking advantage of both spectral and spatial information in a single classification framework.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
18.grsm.jon.pedram.pdf
accesso chiuso
Tipologia:
Documento in versione editoriale
Dimensione
5.78 MB
Formato
Adobe PDF
|
5.78 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.