Cognitive psychology is the branch of psychology related to all the processes by which sensory input is transformed, processed and used. Academic and industrial research has always invested time and resources to develop devices capable to simulate the behavior of the organs where the perceptions are located. In recent years, in fact, there have been numerous discoveries related to new materials, and new devices, capable of reproducing, in a reliable manner, the sensory behavior of humans. Particular interest in scientific research has been aimed at understanding and reproducing of man's tactile sensations. It is known that, through the receptors of the skin, it is possible to detect sensations such as pain, changes in pressure and/or temperature. The development of tactile sensor technology had a significant increase in the last years of 1970s, thanks to the important surveys of Stojiljkovic, Harmon and Lumelsky who presented the firsts prototype of sensors for artificial skin applications, and summarized the main characteristics and requirements of tactile sensors. Recently, organic electronics has been deeply investigated as technology for the fabrication of tactile sensors using biocompatible materials, which can be deposited and processed on ultra flexible and ultra conformable substrates. In general, the most attractive property of these materials is mainly related to their high mechanical flexibility, which is mandatory for artificial skin applications. The main object of this PhD research activity was the development and optimization of an innovative technology for the realization of physical sensors able to detect pressure and temperature variations, which can be applied in the field of biomedical engineering and biorobotics. By exploiting the particular characteristics of the employed materials, such as mechanical flexibility, the proposed sensors are very suitable to be integrated with flexible structures (for example plastics) as a pressure and temperature sensor, and therefore, ideal for the realization of an artificial skin like. In Chapter 1, the basics of humans somatosensory system will be introduced: after a brief description of tactile thermoreceptors, mechanoreceptors and nociceptors, a definition of electronic skin and its characteristics will be provided. In Chapter 2, a wide analysis of the state of the art will be reported. Several and different examples of tactile sensor (in inorganic and organic technology) will be presented, underlining advantages and disadvantages for each approach. In Chapter 3, the firsts experimental results, obtained in the first part of my PhD program, will be presented. All the steps of the fabrication process of the devices will be described, as well as the measurement setup used for the electrical characterization of the sensors. In Chapter 4, the sensor structure optimization will be presented. It will be demonstrated how the presented devices are able to sense simultaneously thermal and mechanical stimuli. Moreover, it will be demonstrated that, thanks to an alternative and innovative fabrication process, the sensors can be transferred directly on skin, thus proving the suitability of the proposed sensor architecture for tactile applications.

Ultra conformable and multimodal tactile sensors based on organic field-effect transistors

VIOLA, FABRIZIO ANTONIO
2018-02-13

Abstract

Cognitive psychology is the branch of psychology related to all the processes by which sensory input is transformed, processed and used. Academic and industrial research has always invested time and resources to develop devices capable to simulate the behavior of the organs where the perceptions are located. In recent years, in fact, there have been numerous discoveries related to new materials, and new devices, capable of reproducing, in a reliable manner, the sensory behavior of humans. Particular interest in scientific research has been aimed at understanding and reproducing of man's tactile sensations. It is known that, through the receptors of the skin, it is possible to detect sensations such as pain, changes in pressure and/or temperature. The development of tactile sensor technology had a significant increase in the last years of 1970s, thanks to the important surveys of Stojiljkovic, Harmon and Lumelsky who presented the firsts prototype of sensors for artificial skin applications, and summarized the main characteristics and requirements of tactile sensors. Recently, organic electronics has been deeply investigated as technology for the fabrication of tactile sensors using biocompatible materials, which can be deposited and processed on ultra flexible and ultra conformable substrates. In general, the most attractive property of these materials is mainly related to their high mechanical flexibility, which is mandatory for artificial skin applications. The main object of this PhD research activity was the development and optimization of an innovative technology for the realization of physical sensors able to detect pressure and temperature variations, which can be applied in the field of biomedical engineering and biorobotics. By exploiting the particular characteristics of the employed materials, such as mechanical flexibility, the proposed sensors are very suitable to be integrated with flexible structures (for example plastics) as a pressure and temperature sensor, and therefore, ideal for the realization of an artificial skin like. In Chapter 1, the basics of humans somatosensory system will be introduced: after a brief description of tactile thermoreceptors, mechanoreceptors and nociceptors, a definition of electronic skin and its characteristics will be provided. In Chapter 2, a wide analysis of the state of the art will be reported. Several and different examples of tactile sensor (in inorganic and organic technology) will be presented, underlining advantages and disadvantages for each approach. In Chapter 3, the firsts experimental results, obtained in the first part of my PhD program, will be presented. All the steps of the fabrication process of the devices will be described, as well as the measurement setup used for the electrical characterization of the sensors. In Chapter 4, the sensor structure optimization will be presented. It will be demonstrated how the presented devices are able to sense simultaneously thermal and mechanical stimuli. Moreover, it will be demonstrated that, thanks to an alternative and innovative fabrication process, the sensors can be transferred directly on skin, thus proving the suitability of the proposed sensor architecture for tactile applications.
13-feb-2018
File in questo prodotto:
File Dimensione Formato  
phdunige_4102276.pdf

accesso aperto

Tipologia: Tesi di dottorato
Dimensione 3.21 MB
Formato Adobe PDF
3.21 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/931640
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact