The unit describes protocols for isolating and characterizing extracellular vesicles (EVs) derived from human adipose tissue-derived mesenchymal stromal cells (MSCs). EVs are a mixed population of membrane-surrounded structures with overlapping composition and size. Advances made in recent years have led to a better understanding of the biological role of EVs. In particular, they can be considered key factors responsible for MSC-paracrine activity, mediating their anti-inflammatory effects towards innate immune cells, such as macrophages. The topics comprise description of the MSC-conditioned medium containing vesicles preparation, EV isolation, and characterization mainly by specifically set up flow cytometry and electron microscopy approaches, and in vitro methodologies involved in testing the EV anti-inflammatory capacity. The procedures described here can be easily reproduced and can be employed regardless of the type of progenitor cells used to secrete EVs. © 2018 by John Wiley & Sons, Inc.
A Method for Isolating and Characterizing Mesenchymal Stromal Cell-derived Extracellular Vesicles
Lo Sicco, Claudia;Reverberi, Daniele;Tasso, Roberta
2018-01-01
Abstract
The unit describes protocols for isolating and characterizing extracellular vesicles (EVs) derived from human adipose tissue-derived mesenchymal stromal cells (MSCs). EVs are a mixed population of membrane-surrounded structures with overlapping composition and size. Advances made in recent years have led to a better understanding of the biological role of EVs. In particular, they can be considered key factors responsible for MSC-paracrine activity, mediating their anti-inflammatory effects towards innate immune cells, such as macrophages. The topics comprise description of the MSC-conditioned medium containing vesicles preparation, EV isolation, and characterization mainly by specifically set up flow cytometry and electron microscopy approaches, and in vitro methodologies involved in testing the EV anti-inflammatory capacity. The procedures described here can be easily reproduced and can be employed regardless of the type of progenitor cells used to secrete EVs. © 2018 by John Wiley & Sons, Inc.File | Dimensione | Formato | |
---|---|---|---|
Current Prot 2018.pdf
accesso chiuso
Descrizione: Articolo principale
Tipologia:
Documento in versione editoriale
Dimensione
910.6 kB
Formato
Adobe PDF
|
910.6 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.