Plant cells possess a large intracellular compartment that animal cells do not, the central vacuole, which has been investigated for a long time. The central vacuole can occupy up to 90% of the cellular volume and, differently from intracellular organelles from animal cells such as lysosomes or endosomes, it is easy to isolate. Because of its large dimension (up to 40 μm diameter) it can be successfully studied using the classical patch-clamp technique. Following the idea that the vacuolar membrane could be used as a convenient model to characterize the functional properties of channel-forming peptides, we verified that the phytotoxic lipodepsipeptide Syringopeptin 25A from Pseudomonas syringae pv syringae was able to form ionic pores in sugar beet vacuoles and we performed a detailed biophysical analysis. Recently, we extended the use of plant vacuoles to the expression and functional characterization of animal intracellular transporters, namely rat CLC-7, and channels, i.e. human TPC2. Since endo-lysosomal transporters and channels are still largely unexplored, principally because their intracellular localization renders them difficult to study, we believe that this novel approach will prove to be a powerful system for the investigation of the molecular mechanisms of exogenous transporters and channels. This article is part of a Special Issue entitled: Pore-Forming Toxins edited by Mauro Dalla Serra and Franco Gambale.
Using the plant vacuole as a biological system to investigate the functional properties of exogenous channels and transporters
Carpaneto, A.
2016-01-01
Abstract
Plant cells possess a large intracellular compartment that animal cells do not, the central vacuole, which has been investigated for a long time. The central vacuole can occupy up to 90% of the cellular volume and, differently from intracellular organelles from animal cells such as lysosomes or endosomes, it is easy to isolate. Because of its large dimension (up to 40 μm diameter) it can be successfully studied using the classical patch-clamp technique. Following the idea that the vacuolar membrane could be used as a convenient model to characterize the functional properties of channel-forming peptides, we verified that the phytotoxic lipodepsipeptide Syringopeptin 25A from Pseudomonas syringae pv syringae was able to form ionic pores in sugar beet vacuoles and we performed a detailed biophysical analysis. Recently, we extended the use of plant vacuoles to the expression and functional characterization of animal intracellular transporters, namely rat CLC-7, and channels, i.e. human TPC2. Since endo-lysosomal transporters and channels are still largely unexplored, principally because their intracellular localization renders them difficult to study, we believe that this novel approach will prove to be a powerful system for the investigation of the molecular mechanisms of exogenous transporters and channels. This article is part of a Special Issue entitled: Pore-Forming Toxins edited by Mauro Dalla Serra and Franco Gambale.File | Dimensione | Formato | |
---|---|---|---|
37 Festa_BBA_2016.pdf
accesso chiuso
Tipologia:
Documento in versione editoriale
Dimensione
782.86 kB
Formato
Adobe PDF
|
782.86 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.