In the context of the low speed and high drift angles manoeuvres, a limited number of experimental test cases are available in open literature. Consequently, the ability to reliably predict the hull forces (and the related hydrodynamic coefficients) via computational fluid dynamics calculations may represent a significant added value to further tune or to generate new simplified hull forces models to be employed in a manoeuvring code. Even if some applications can be found in the literature for selected cases and conditions, as those considered in the present work, a more systematic comparison is mandatory to confirm the reliability of these numerical approaches. In light of this, in the present work a systematic application of the open-source viscous-based flow solver OpenFOAM to predict forces at low-speed manoeuvring conditions for two ship test cases (the KCS and the KVLCC) is presented. The proposed numerical setup, specifically designed to be applied in the early ship design stage (limiting computational effort), shows a satisfactory accuracy to cope with the strong off-design conditions related to these specific ship operative conditions.

CFD-based analyses for a slow speed manoeuvrability model

Villa, Diego;Viviani, Michele;Gaggero, Stefano;
2019

Abstract

In the context of the low speed and high drift angles manoeuvres, a limited number of experimental test cases are available in open literature. Consequently, the ability to reliably predict the hull forces (and the related hydrodynamic coefficients) via computational fluid dynamics calculations may represent a significant added value to further tune or to generate new simplified hull forces models to be employed in a manoeuvring code. Even if some applications can be found in the literature for selected cases and conditions, as those considered in the present work, a more systematic comparison is mandatory to confirm the reliability of these numerical approaches. In light of this, in the present work a systematic application of the open-source viscous-based flow solver OpenFOAM to predict forces at low-speed manoeuvring conditions for two ship test cases (the KCS and the KVLCC) is presented. The proposed numerical setup, specifically designed to be applied in the early ship design stage (limiting computational effort), shows a satisfactory accuracy to cope with the strong off-design conditions related to these specific ship operative conditions.
File in questo prodotto:
File Dimensione Formato  
Villa_et_al-2018-Journal_of_Marine_Science_and_Technology.pdf

accesso chiuso

Tipologia: Documento in versione editoriale
Dimensione 2.1 MB
Formato Adobe PDF
2.1 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/929221
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 13
social impact