We study the inverse problem of determining a real-valued potential in the two-dimensional Schrodinger equation at negative energy from the Dirichlet-to-Neumann map. It is known that the problem is ill-posed and a stability estimate of logarithmic type holds. In this article, we prove three new stability estimates. The main feature of the first one is that the stability increases exponentially with respect to the smoothness of the potential, in a sense to be made precise. The others show how the first estimate depends on the energy. In particular it is found that for high energies the stability estimate changes, in some sense, from logarithmic type to Lipschitz type: in this sense the ill-posedness of the problem decreases with increasing energy (in modulus).

Stability estimates for an inverse problem for the Schrödinger equation at negative energy in two dimensions

Matteo Santacesaria
2013

Abstract

We study the inverse problem of determining a real-valued potential in the two-dimensional Schrodinger equation at negative energy from the Dirichlet-to-Neumann map. It is known that the problem is ill-posed and a stability estimate of logarithmic type holds. In this article, we prove three new stability estimates. The main feature of the first one is that the stability increases exponentially with respect to the smoothness of the potential, in a sense to be made precise. The others show how the first estimate depends on the energy. In particular it is found that for high energies the stability estimate changes, in some sense, from logarithmic type to Lipschitz type: in this sense the ill-posedness of the problem decreases with increasing energy (in modulus).
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11567/929197
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact