AIM: Targeting 5-HT1A receptor (5-HT1AR) as a strategy for CNS disorders and pain control. METHODOLOGY: A series of 1,3-dioxolane-based 2-heteroaryl-phenoxyethylamines was synthesized by a convergent approach and evaluated at α1-adrenoceptors and 5-HT1AR by binding and functional experiments. Absorption, distribution, metabolism, excretion and toxicity prediction studies were performed to explore the drug-likeness of the compounds. RESULTS & CONCLUSION: The most promising compound, the pyridin-4-yl derivative, emerged as a potent and selective 5-HT1AR agonist (pKi = 9.2; pD2 = 8.83; 5-HT1A/α1 = 135). In vitro it was able to permeate by passive diffusion MDCKII-MDR1 monolayer mimicking the blood-brain barrier and showed promising neuroprotective activity.
Synthesis and biological evaluation of 1,3-dioxolane-based 5-HT1A receptor agonists for CNS disorders and neuropathic pain
Fossa Paola;Cichero Elena;
2018-01-01
Abstract
AIM: Targeting 5-HT1A receptor (5-HT1AR) as a strategy for CNS disorders and pain control. METHODOLOGY: A series of 1,3-dioxolane-based 2-heteroaryl-phenoxyethylamines was synthesized by a convergent approach and evaluated at α1-adrenoceptors and 5-HT1AR by binding and functional experiments. Absorption, distribution, metabolism, excretion and toxicity prediction studies were performed to explore the drug-likeness of the compounds. RESULTS & CONCLUSION: The most promising compound, the pyridin-4-yl derivative, emerged as a potent and selective 5-HT1AR agonist (pKi = 9.2; pD2 = 8.83; 5-HT1A/α1 = 135). In vitro it was able to permeate by passive diffusion MDCKII-MDR1 monolayer mimicking the blood-brain barrier and showed promising neuroprotective activity.File | Dimensione | Formato | |
---|---|---|---|
futuremedchem-2018-0107.pdf
accesso chiuso
Tipologia:
Documento in versione editoriale
Dimensione
722.77 kB
Formato
Adobe PDF
|
722.77 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.