Fibrodysplasia ossificans progressiva (FOP) is a rare genetic condition characterized by progressive extra-skeletal ossification leading to cumulative and severe disability. FOP has an extremely variable and episodic course and can be induced by trauma, infections, iatrogenic harms, immunization or can occur in an unpredictable way, without any recognizable trigger. The causative gene is ACVR1, encoding the Alk-2 type I receptor for bone morphogenetic proteins (BMPs). The signaling is initiated by BMP binding to a receptor complex consisting of type I and II molecules and can proceed into the cell through two main pathways, a canonical, SMAD-dependent signaling and a p38-mediated cascade. Most FOP patients carry the recurrent R206H substitution in the receptor Glycine-Serine rich (GS) domain, whereas a few other mutations are responsible for a limited number of cases. Mutations cause a dysregulation of the downstream BMP-dependent pathway and make mutated ACVR1 responsive to a non-canonical ligand, Activin A. There is no etiologic treatment for FOP. However, many efforts are currently ongoing to find specific therapies targeting the receptor activity and the downstream aberrant pathway at different levels or targeting cellular components and/or processes that are important in modifying the local environment leading to bone neo-formation.

The Horizon of a Therapy for Rare Genetic Diseases: A "Druggable" Future for Fibrodysplasia Ossificans Progressiva

Cappato, Serena;Giacopelli, Francesca;Ravazzolo, Roberto;Bocciardi, Renata
2018-01-01

Abstract

Fibrodysplasia ossificans progressiva (FOP) is a rare genetic condition characterized by progressive extra-skeletal ossification leading to cumulative and severe disability. FOP has an extremely variable and episodic course and can be induced by trauma, infections, iatrogenic harms, immunization or can occur in an unpredictable way, without any recognizable trigger. The causative gene is ACVR1, encoding the Alk-2 type I receptor for bone morphogenetic proteins (BMPs). The signaling is initiated by BMP binding to a receptor complex consisting of type I and II molecules and can proceed into the cell through two main pathways, a canonical, SMAD-dependent signaling and a p38-mediated cascade. Most FOP patients carry the recurrent R206H substitution in the receptor Glycine-Serine rich (GS) domain, whereas a few other mutations are responsible for a limited number of cases. Mutations cause a dysregulation of the downstream BMP-dependent pathway and make mutated ACVR1 responsive to a non-canonical ligand, Activin A. There is no etiologic treatment for FOP. However, many efforts are currently ongoing to find specific therapies targeting the receptor activity and the downstream aberrant pathway at different levels or targeting cellular components and/or processes that are important in modifying the local environment leading to bone neo-formation.
File in questo prodotto:
File Dimensione Formato  
Cappato 2018 ijms-19-00989.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: Documento in versione editoriale
Dimensione 670.86 kB
Formato Adobe PDF
670.86 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/921532
Citazioni
  • ???jsp.display-item.citation.pmc??? 15
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 26
social impact