Cupuassu (Theobroma grandiflorum Schum.) is a popular Amazonian fruit because of its intense aroma and nutritional value, whose lipid fraction is alternatively used in cosmetics. To preserve active principles and ensure their controlled release, extract was microencapsulated by spray drying. Influence of spray-drying conditions on microencapsulation of cupuassu seed by-product extract was investigated according to a 33-Box Behnken factorial design, selecting inlet temperature, maltodextrin concentration and feed flowrate as independent variables, and total polyphenol and flavonoid contents, antiradical power, yields of drying and microencapsulation as responses. Fitting the results by second-order equations and modelling by Response Surface Methodology allowed predicting optimum conditions. Epicatechin and glycosylated quercetin were the major microencapsulated flavonoids. Microparticles showed satisfactory antiradical power and stability at 5 °C or under simulated gastrointestinal conditions, thus they may be used to formulate new foods or pharmaceuticals.

Optimization of spray drying conditions to microencapsulate cupuassu (Theobroma grandiflorum) seed by-product extract

Casazza, Alessandro A.;Aliakbarian, Bahar;Converti, Attilio;Perego, Patrizia
2019

Abstract

Cupuassu (Theobroma grandiflorum Schum.) is a popular Amazonian fruit because of its intense aroma and nutritional value, whose lipid fraction is alternatively used in cosmetics. To preserve active principles and ensure their controlled release, extract was microencapsulated by spray drying. Influence of spray-drying conditions on microencapsulation of cupuassu seed by-product extract was investigated according to a 33-Box Behnken factorial design, selecting inlet temperature, maltodextrin concentration and feed flowrate as independent variables, and total polyphenol and flavonoid contents, antiradical power, yields of drying and microencapsulation as responses. Fitting the results by second-order equations and modelling by Response Surface Methodology allowed predicting optimum conditions. Epicatechin and glycosylated quercetin were the major microencapsulated flavonoids. Microparticles showed satisfactory antiradical power and stability at 5 °C or under simulated gastrointestinal conditions, thus they may be used to formulate new foods or pharmaceuticals.
File in questo prodotto:
File Dimensione Formato  
A329.pdf

accesso chiuso

Descrizione: Articolo principale
Tipologia: Documento in versione editoriale
Dimensione 902.37 kB
Formato Adobe PDF
902.37 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/914986
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 13
social impact