The need of continuously improving propulsive efficiency encourages the development of energy saving devices, the understanding of their underlying principles and the validation of their effectiveness. In this work, a design by optimization of Propeller Boss Cap Fin (PBCF) devices is carried out using Computational Fluid Dynamics analyses. RANS calculations (by the OpenFOAM library) are applied in an automatic optimization design approach involving a parametric description of the main characteristics of PBCFs. The optimization is carried out with multiple purposes: identify a reliable design strategy necessary to customize the PBCF geometry based on the propeller functioning and evaluate the influence of alternative configurations and of main geometrical parameters in achieving higher efficiency. The use of high-fidelity RANS calculations confirm that the decrease of the hub vortex strength, the reduction of the net torque and the influence of the additional fins on blades performance are the major contributors to the increase of efficiency. Results of detailed analyses of optimal PBCF configurations show model scale increases of efficiency of about 1%.

AN OPTIMIZATION FRAMEWORK FOR PBCF ENERGY SAVING DEVICES

Stefano Gaggero;Diego villa
2018-01-01

Abstract

The need of continuously improving propulsive efficiency encourages the development of energy saving devices, the understanding of their underlying principles and the validation of their effectiveness. In this work, a design by optimization of Propeller Boss Cap Fin (PBCF) devices is carried out using Computational Fluid Dynamics analyses. RANS calculations (by the OpenFOAM library) are applied in an automatic optimization design approach involving a parametric description of the main characteristics of PBCFs. The optimization is carried out with multiple purposes: identify a reliable design strategy necessary to customize the PBCF geometry based on the propeller functioning and evaluate the influence of alternative configurations and of main geometrical parameters in achieving higher efficiency. The use of high-fidelity RANS calculations confirm that the decrease of the hub vortex strength, the reduction of the net torque and the influence of the additional fins on blades performance are the major contributors to the increase of efficiency. Results of detailed analyses of optimal PBCF configurations show model scale increases of efficiency of about 1%.
2018
978-079185127-2
File in questo prodotto:
File Dimensione Formato  
OMAE2018-77921.pdf

accesso chiuso

Tipologia: Documento in Post-print
Dimensione 2.31 MB
Formato Adobe PDF
2.31 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/914769
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 3
social impact